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A self-adaptive forward-backward-forward algorithm for
solving split variational inequalities

- , an
TzU-CHIEN YIN!, NAWAB HUSSAIN? and ASIM ASIRI?

ABSTRACT. In this paper, we consider an iterative approximation problem of split variational inequalities
in Hilbert spaces. In order to solve this split problem, we construct an iterative algorithm which combines a
forward-backward-forward method and a self-adaptive rule to update the step-sizes. We prove that the con-
structed algorithm converges strongly to a solution of the split variational inequalities under some mild as-
sumptions.

1. INTRODUCTION

Let H be a real Hilbert space with inner product (-,-) and norm || - |. Let C be a
nonempty closed convex subset of H. Let ¢ : C — H be a nonlinear operator. In this
paper, we focus on the following variational inequality of finding a point u' € C satisfy-
ing
(1.1) W,z —ul)y >0, vz e C.

Here, its solution is denoted by Sol(C, ).
Let Sol;(C, 1) be the solution set of the dual variational inequality of (1.1), that is,

(1.2) Soly(C, ) == {ul € C|(¥(x),z —u') > 0,Vz € C}.

It is obviously that Sol(C, ) is closed convex. If C is convex and 7 is continuous, then
Solg(C, 1) C Sol(C, ).

Variational inequalities were introduced by Stampacchia ([26]) in the context of calcu-
lus of variations and optimal control theory for the study of partial differential equations
with applications principally drawn from mechanics. Variational inequalities in the finite
dimensional case have taken their own tangent to become an interesting research field
since the late 1970s ([15]). This fact unveiled this methodology for the study of many
problems such as partial differential equations, optimization problems ([11, 48]), fixed
point problems ([28, 30, 32, 38, 39]), optimal control problems ([3, 12]), mathematical pro-
gramming problems ([9]), management problems, equilibrium problems ([51]), network
problems, and so on. A tremendous amount of work has gone into variational inequality
in different directions, namely, existence theories, iterative methods and applications, see,
e.g.,[1,4,29,36,37,47].

An operator ¢ : C' — H is called

(i) monotone if
(¥(z) —¥(2),x —2) 20, Yo,z € C.
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(ii) T-strongly monotone if there exists a constant 7 > 0 satisfying

(V(x) — (&), z — &) > 7llz — &[|°, Va,2 € C.
(iii) T-inverse-strongly monotone if there exists a constant 7 > 0 satisfying
((2) = P(@), 2 — 3) > 7[Y(x) — (@), Vo, 2 € C.
(iv) pseudomonotone if
W(@),z—2) > 0= (Y(x),z— &) >0, Vz,& € C.
(v) L-Lipschitz continuous if there exists a constant L > 0 satisfying
lo(@) =9 (@) < Lz — 2|, Vo,& € C.

If L < 1, then ¢ is called L-contraction. If L = 1, then 1) is called nonexpansive.

A basic algorithm for solving (1.1) is the projection algorithm ([2, 25]) defined by the
following manner

Tpt1 = projolr, — M(zy,)], n >0,
where proj- : H — C is the metric projection, the operator ¢ is strongly monotone (or
inverse-strongly monotone) ([12]) and L-Lipschitz continuous and X € (0, +) is the step-
size.
In order to relax the operator ¢ to more general monotone operator, Korpelevich [18]
introduced an extragradient algorithm defined by

(13) Yn = projc[xn - )\1#(%)],
Tn41 = pYOjc[zn - M/’(Z/n)], n > 0.

Extragradient algorithm has attracted much attention by many scholars who modified
and extended (1.3) in several forms, see [7, 31, 33, 34, 30, 44, 50]. Especially, Tseng [32]
suggested the following so-called Tseng’s algorithm

{yn = projo[en — A (zn)],

14
a4 Tat = Yo+ Al (@n) — (ga)], 0> 0.

Very recently, Bot, Csetnek and Vuong [3] approach the solution of Sol(C, ¢) from a contin-
uous perspective by means of trajectories generated by the dynamical system of forward-
backward-forward type ([3]) and propose the following algorithm

{yn = proje[mn — Ab(a)],

(1) Enit = (1 — )2 + Ol + AN(@n) — ¥y, 1> 0,

where 1) is a pseudomonotone operator. Several related results, please refer to [5, 10, 46].
Recall that an operator ¢ : C' — H is said to be quasimonotone if

It is easy to see that if ¢ is pseudomonotone, then i) must be quasimonotone. But the
reverse assertion is not true in general, see the following example.

Example 1.1. (see [23]) The function ¥ : R — R defined by #(x) = 2? is quasimonotone
on R, but not pseudomonotone on R.
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Recently, Yin and Hussain [45] approach the solution of quasimonotone variational
inequalities by using forward-backward-forward method (1.5). On the other hand, to
ensure the convergence of the sequence {xz,,}, a common condition Sol(C,v) C Soly(C, )
is needed, that is,

(W(z),z —u) >0, Yu € Sol(C,¢) and z € C,

which is a direct consequence of the pseudomonotonicity of . But this conclusion (that
is, Sol(C, ¥) C Solg(C, 1)) is false, if 7 is quasimonotone.

Letp: C — H and ¢ : C — C be two nonlinear operators. Recall that the generalized
variational inequality ([22, 42, 43]) is to find a point z' € C such that

(1.6) (p(zh), p(x) — p(2")) > 0, Vz € C.

The solution set of (1.6) is denoted by Sol(C, ¢, ¢).

If ¢ = I¢, then the generalized variational inequality (1.6) reduces to the variational
inequality (1.1).

The main purpose of this paper is to consider the following split variational inequality
problem ([16, 17]) of finding a point ' such that

(1.7) xT € Sol(C, ¢, ¢) and ¢(xT) € Soly(C, 7).

The prototype of split variational inequality considered in [8, 20, 24, 41] is to seek a
point = such that = € Sol(C, ) and A(z') € Sol(Q,v), where A : C — Q is a bounded
linear operator. The reason why we are interested in the split variational inequality is that
it is an extension of the split feasibility problem ([6]) arising from image denoising, signal
processing and image reconstruction, see, [13, 14, 19, 27, 28, 38, 39, 40] for more details.

Motivated by the work in this field, in this paper, we investigate the split variational
inequality (1.7) in which the involved operators ¢ is inverse strongly ¢-monotone and % is
quasimonotone. For solving this split variational inequality, we propose an iterative algo-
rithm which combines the forward-backward-forward algorithm (1.5) and a self-adaptive
rule to update the step-sizes. We show that the constructed algorithm converges strongly
to a solution of the split variational inequalities under some mild conditions.

2. PRELIMINARIES

Let C be a nonempty closed convex subset of a real Hilbert space H. Let u be any fixed
point in H. Then, there exists a unique point in C, denoted by proj[u] such that

[u = projelull] < |l = ul], V& € C,

where proj is orthogonal projection from H onto C. It is well known that proj satisfies
the following two inequalities

(2.8) |lproja[z] — projc[y]HQ < (projelz] — projolyl,  — vy, Vo,y € H.
and
(2.9) (z — projclz],y — projc(z]) <0, Vz € H,y € C.

Let ¢ : C — C and ¢ : C — H be two operators. Recall that ¢ : C — H is said to be
v-inverse strongly ¢-monotone if there exists a constant ¥ > 0 such that

(p(@) = p(y), d(z) — $(y)) = V() — (y)I*, Y,y € C.
Then, for all z,y € C and o > 0, we have
[(¢(2) — ap()) = (¢(y) — ap)II* < ala —20)|lp(x) — (y)|®

(2.10) 5
+[lo(x) — o(y)1°.
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An operator B : H — 2% is said to be monotone if and only if (z — y,u —v) > 0
for all z,y € dom(B), v € B(x), and v € B(y). A monotone operator B on H is said
to be maximal if and only if its graph is not strictly contained in the graph of any other
monotone operator on H.

In what follows, we use “ — ” and “ — ” to denote weak convergence and strong
convergence, respectively. Recall that an operator ¢ : C — H is said to be sequentially
weakly continuous if for given sequence {z,}: z,, — uwimplies that ¢ (z,) — ¥ (u).

Lemma 2.1. Let H be a real Hilbert space. Then,
(2.11) lrz + (1 = r)at|* = rllal® + 1 = )" —r(1 = 1)z — 27,
forany x, 2" € Hand r € R.

Lemma 2.2 ([35]). Let {a,} C [0,400), {b,} C (0,1) and {c,} C R be three real numbers
sequences. Suppose that {a,}, {bn} and {c,,} satisfy the following assumptions
(1) An+1 S (1 - bn)an + Cn, n Z 1/
(i) 3757 b = 00;
(iii) limsupc, /by, <0o0r > 07 | |en| < oo

n—oo

Then lim,,_yoo a,, = 0.

Lemma 2.3 ([21]). Let {Y,,} be a sequence of real numbers. Assume {Y,} does not decrease at
infinity, that is, there exists at least a subsequence { Y, } of {Yn} such that Y, <Y, 41 forall
k > 0. For every n > Ny, define an integer sequence {I(n)} as

In)=max{i <n:Tp, <Th,+1}
Then I(n) — oo as n — oo and for all n > Ny,

max{ Yy, Tn} < Trmys1-

3. MAIN RESULTS

In this section, we first propose an iterative algorithm for solving problem (1.7). Con-
sequently, we demonstrate its convergence analysis. Let C' be a nonempty closed con-
vex subset of a real Hilbert space H. Let C : C — H be a §-contractive operator. Let
¢ : C — C be a weakly continuous and 7-strongly monotone operator with Rang(¢) = C.
Let ¢ : C' — H be a ¥-inverse strongly ¢-monotone operator. Let the operator ¢ be quasi-
monotone on H, L-Lipschitz continuous on C.

In the sequel, we suppose that 1) satisfies the following condition (p): Let {2,} be a
known sequence in H. If z,, — ¢ € H and lim infj,_ [|¢(2,)|| =0, then we have 1 (¢") = 0.

Remark 3.1. It is clearly that if ¢ is sequentially weakly continuous, then ) satisfies the
hypothesis (p).

Let {¥,}, {0} and {p,} be three real numbers sequences in [0, 1] and {a,,} be a real
numbers sequence in (0,00). Let { € (0,00) and € (0,1) be two constants. In what
follows, we suppose that = := {z|z € Sol(C, ¢, ¢) and ¢(x) € Solq(C, )} # 0.

Next, we present an iterative algorithm for solving problem (1.7).

Algorithm 3.1. Let z( be an initial point in C' and ¢, be a positive constant. Set n = 0.
Step 1. Let x,, be constructed. Then, compute

(6.12) n = projo([VngC(an) + (1 — Un)(d(xn) — anp(zn))]-
Step 2. Let ¢, be given. Compute

(3.13) Yn = PrOjc[Un — sn?(Jn)],
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and

(3.14) Zp = (1= 00)Gn + 0nYn + 0nsn[V(Gn) — ¥ (yn)].

Step 3. Compute

(315) ¢(xn+1) = (1 - pn)(b(xn) + Pnn-

Step 4. Update

min {G, rpiZe=tel Ly it () # (),

Sny else.

(3.16) S {

Write n := n + 1 and return to step 1.

Remark 3.2. (i) By the definition (3.16) of {s,}, sn+1 < ¢,. Thanks to the L-Lipschitz
n‘lyn_gn”
1Y (yn)—¥(Ga)l
limy, o0 6, exists. (ii) If y,, = @y, then y,, € Sol(C,v). (iii) The following variational

inequality has a unique solution

continuity of 1, we have > 7 which implies that ¢, > min{s, #}. Thus,

Theorem 3.1. Suppose that the following conditions are satisfied:

(C1): limyyoo ¥y =0and Y02 | 0, = 00,

(C2): 0 < liminf, o pp, < limsup,,_ . pn < 1;

(C3): 0 < liminf,_,o 0, <limsup,,_, ., opn < 1;

(C4): 0 <0 <7< 29and 0 < liminf, o oy < limsup,,_, ., an < 29.

Then the sequence {x,} generated by Algorithm 3.1 converges strongly to a point in E which
solves (3.17).

Proof. Let 2 € E. Then, £ € Sol(C, ¢, ¢) and ¢(£) € Soly(C,¢) C Sol(C,). It follows
that ¢(2) = projc[¢(2) — ap(2)],Ya > 0. By (C4), we deduce that ¢(2) = projo[¢(2) —
ane(2)],¥n > 0. Utilizing (2.10), we have

I¢(@n) = anp(zn) = (6(2) — anp(2))|
(3.18) < llp(zn) = $()* + anlan — 20)llp(zn) — ¢ (2)|
< ll¢(an) = o(2)]1%,

and

[9(Tn+1) — ant10(Tnt1) = (S(zn) — O‘n+190($n))”2

(3.19) ) >
<[(@n41) = dlan)|I? + angi(ani — 20)[p(@nr1) — (@)%
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By (3.12) and (3.18), we obtain

19 = ¢(2)|| = [lprojc[IngC(wn) + (1 — ¥n)(¢(zn) — anp(an))]
—projgo(2) — anp(2)]|
< [0 (EC(xn) — @(2) + anp(2)) + (1 — Jy)
X [d(zn) — anp(wn) — (9(2) — anp(2))]l
< In€l|C(xn) — C(2)|| + InlI€C(2) — ¢(2) + anp(Z)]
+ (1= n)l|o(@n) — anp(zn) = (¢(2) — anp(2))]
< OnbElzn — 2] + Inl[EC(2) — &(2) + anp(2) ||
+ (1= dn)l[é(@n) — S(2)||
< b8/ 7l[¢(xn) — d(2)[| + InllEC(2) — B(2) + anp(2)]]
+ (1 =95 l[¢(xn) — (2)|
<[ = —=05/m)dn]ll¢(zn) — o (2)]l
+ I ([6C(2) — ¢ (2)[| + 20 (2)11)-
Combining (3.13) and (3.20), we receive
150 = SEI* < [00(EC(xn) — D(2) + anp(2)) + (1 = V)
X [$(n) = anp(zn) = (6(2) — anp(2))]|”
< Dnll€C(zn) — @(2) + anp(2) |2 +(1—4,)
X [|6(wn) = anp(an) = ($(2) — anp(2))|?
< 9n)|€C(20) — $(2) + anp(2)II” + (1 = In)[ll6(z0) — $(2)]?
+ an(an —20)[[p(xa) — (2)|%]-
Applying (2.9) to (3.13), we deduce
(3.22) (U = G+ SutB(In), v — 6(2)) < 0.
Since ¢(2) € Solq(C,¢) and y,, € C, we have
(3.23) ((yn)s yn — ¢(2)) > 0.
From (3.22) and (3.23), we get
(324) (U = G = HE)) + 50 (0(G) = Yy 9 — 6(2) < 0.
It follows that

%(Hyn =l + lyn = G = g0 — SEI?) + n () — Y(yn) yn — S(2)) <0,
which yields that
(3.25)  lyn = d(DN* < llim — S(E)I* = 260 (8 (Fn) — ¥ (¥n), yn — 3(2)) = llym —
By (3.14), we have
len = @E)* = (1 = o) (G = 3(2)) + On(yn = $(2)) + Onsn[V(Fn) — ¥(yn)][I*
=11 = ) (Gn = 6(2) + on(yn — SEDI + o2 1¢(Gn) — 2 (yn

+20n(1_0n)§n<yn_ () ( ) w( )>
+ 20750 (Yn — A(2), Y (Gn) — P (yn))-

(3.20)

(3.21)

(3.26)
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Applying equality (2.11), we obtain
11 = 00) (I = 6(2)) + onlyn — S()I* = (1 = 00) 9n — & (2)|?

(3.27) A .
+ Gn”yn - ¢(Z)||2 - O'n(l - Gn)”yn - ynH2

Substituting (3.25) and (3.27) into (3.26) to deduce

120 = @) < 90 — dE)? = 00 (2 = 00) 190 — ynll* + o [9(Fn) — D (yn)II®
+207(1 = 00)n (I — Yn, ¥ (Gn) — ¥(yn))

< gn = 6@ = 00 (2 = 00)lgn = yall® + o7 2 19 () —
+ 200 (1 = 00)Sn |90 = Yn [l (Fn) — P (yn) |l

3.28
329 vl

By (3.16), [|¢(yn) — ¥ (i) < "“-’gjn” . This together with (3.28) implies that

; 2
2n Yn — Gl
n+1

120 = ()7 < 1gn = S)N? = 0n(2 = on)llFn = yul® + o7

I?

Snop A
(3.29) + 200 (1 = 0n)n——IIn — ¥Yn
Sn+1

n
2

=llgn — d(DN? = onl2 = o0 — oun® 57— — 2(1 - Uﬂ)nT]”yn ynl®.

gn+1

By Remark 3.2, lim,,_, o ¢, €xists and thus limnﬁC>O ggﬁ = 1. This together with condition

(C3) implies that lim,,_,c[2 — (1 —o0n)n gi 1] > 0. Then, there exist a

3 —2(1—0,)ne

Sn+1 —

positive constant g and a positive 1nteger m such that2—o,

0 > 0 when n > m. Based on (3.29), we get
(3.30) |20 = d)? < 190 — S = ollgn — yall*.

From (3.15), (3.20) and (3.30), we have

[¢(zni1) = () < (1= pn)lld(zn) — d(2)]| + pulldn — S(2)]]
< (L= po)llo(@n) = 62 + pnllgn — (2l
< (L= po)llo(@n) = S(2)| + pnll — (1 = 0¢/7)0]
(3:31) X [|p(zn) = P2 + pndn(ElIC(2) — #(2)]| + 29[l (2)]])
= [ = =0&/m)pnVnlll¢(zn) — ()| + (1 = 0¢/7) pntIn
e — 6G) |+ 20l
1-06¢/7

It results in that

[p(zn) = 6(2)] < maX{W(ﬂ«"o) =@, s llo(em) — (2,

1€C(2) — #(2) || + 20| (2 )||}
1—6¢/7 ’

which implies that the sequence {¢(x,,)} is bounded. Note that ||z, —2|| < L[¢(zn)—¢(2)|
and [|lyn = $(2)[| < [[9n = A(2)[[ +<nl[¥(gn)]|| Consequently, the sequences {2}, {yn}, {gn}
and {Z, } are bounded.



560 Tzu-Chien Yin, Nawab Hussain and Asim Asiri
According to (2.11) and (3.15), we have

lp(@n41) = S = 11 = pu)(@(wn) = (2)) + pul@n — 6(2))|?
(3.32) = pullEn — 6(2)|1* + (1 = pu)|6(2n) — 6(2)]?
— pu(L = pu)[En — o).
In the light of (3.30) and (3.32), we derive

oy 100 =0 S pullin = I+ (1= ploan) = 60
— pu(1 = pu)[En — Bz ||

Using (3.20), we receive
50 = #(* < [1 = (1 = 08/7)0nlllp(an) — S(2)]
(3.34) 1€C(2) = o) + 20l (2]l
- o/ e )
Now, we divide the following proof into two cases. Case (i): There exists some large
enough N; > m such that the sequence {||¢(z,) — #(2)|} is decreasing when n > Nj.
Case (ii): For any N, > m, there exists an integer j > N, such that ||¢(z;) — ¢(2)| <

lé(zj41) — ().
For Case (i), we can deduce that lim,,_, ||¢(z,) — ¢(2)]| exists. On account of (3.33)
and (3.34), we have

(L= pu)l|En — d(@n)lI” < pullgn — d(2)7 + (1 = pu)|6(2n) — 6(2)]?
—ll¢(zns1) = D(2)II?
< ll¢(@n) = 6D = d(zns1) — &(2)]?

+u_%ﬁm(maali;wwmw

— 0.
It leads to
(3.35) Jim (|25, — ¢(xn)|| = 0.
By (3.15), we have ¢(zp41) — ¢(zn) = pn(@n — ¢(zn)). This together with (3.35) implies
that
(3.36) lim [|¢(znt1) — ¢(zn)| = 0.

n—oo

By virtue of (3.15), (3.21) and (3.30), we get

I¢(@ns1) = S(2)1* = 11 = pu)(S(2n) = G(2)) + pu(En — &(2)]?
< (1= pa)llé(@n) = 6D + pulldn — (2
< (1= p)llé(an) = 6D + pulldn — ¢(2)]
< (1= pa)llé(an) = D + pu(1 = In) [ p(xn) — H(2)I?

+ (1 = Fn)an (0 — 20)lp(zn) — @(2)|?
+ prInll€C(2n) — $(2) + anp(2)II?
< ll¢(@n) = SE)II° + pntnllEC(wn) — () + anep(2)]
+ a1 = In)an(an — 20)o(za) — 0(2)]*.

(3.37)
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It yields that

pn(l - ﬁn)an(Qﬁ - an)”%"(xn) - (A)H2
< p(an) = o) = lo(xnt1) — S(2)|?

+ P ln[€C(xn) — () + anp(2)|?
— 0.

(3.38)

Noting that liminf,, o pn(1 — ¥5)an (29 — ay) > 0, it follows from (3.38) that
(3.39) lim [j¢(zn) — @(2)] = 0.

n—oQ

As a result of (2.8), (3.12) and (3.18), we have

150 — ¢(2)]I* = [Proje[9n€C(@n) + (1 = Vn)(d(zn) — anp(zn))]
— projc[(2) — anp(2)]|?
= < n€C(x5) + (1 = 0n)(¢(zn) — anp(@n)) — (B(2) — anp(2)), gn — ¢(2))
In(6C(xn) — G(2) + anp(2), gn — #(2))
+ (1 = 9n){(P(@n) — anp(®n) — ¢(2) + anp(2), I — #(2))
< Dn(EC(n) = D) + an(2), G — 0 + 3 {15 — S
+llé(zn) — anp(an) = 6(2) + anp(2)|?
— 16(n) = G — anlplea) — ()N}
< InlléC(an) — ¢(2) + ane()[[|9n — ¢(2)]]
+ 3 {1660) = 67 + i — S — a2lp(an) - w(2)]
—l¢(@n) = Gull? + 20 ($(20) = G p(wn) — 80(2»}-
It follows that
190 — ¢(2)I* < lld(zn) = d(2)]1* — $(@n) — Gnl®
(3.40) + 2an¢(zn) = dulllle(zn) — ©(2)|l
+ 20, [|€C(zn) — &(2) + an@(2) 90 — S(2)]]-
Based on (3.33) and (3.40), we achieve
[¢(zn+1) = SN < llo(n) — S + 2anllp(zn) — Gullll(an) — 0 (2)]]
+ 200 [[6C(2n) — ¢(2) + anp(2)[15n — (2)]
= pullo(@n) — fgnH2a
which implies that
palld(@n) = Gall? < l(@n) = S = l|o(znr1) — $(2)]I?
(3.41) + 200[|¢(xn) = Gnlllle(zn) — ©(2)]
+ 20, C(xn) — ¢(2) + anp(2) 190 — d(2)]-
By conditions (C1), (C2), (3.39) and (3.41), we obtain

(3.42) Jim ([¢(2n) = | = 0.
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On the other hand, from (3.30) and (3.37), we get

[¢(zn+1) = 2P < (1= pu)lld(zn) = (D + pullzn — o(2)[I?
< (1= pa)llg(@n) = G + pullin — S = prellgn — yall*.

Thus,

prellin = ynll* < (1= pu)(I6(2n) = A(DN* = p(@ns1) — B(2)]?)

(3.43) + pu(ldn = S + [6(n11) = SEDIS(Ens1) il

In the light of (3.36) and (3.42), we deduce

lm |[¢(2n11) = Gnl = 0.

n—roo

This together with (3.43) implies that

(3.44) lim ||yn — gull = 0.

n—oQ

By (3.43) and the Lipschitz continuity of v, we have

(3.45) lim {[¢(gn) — P (yn)ll = 0.

n—oo

Since the sequences {z,} and {g,} are bounded, we can choose a common subsequence
{n;} of {n} such that z,,, — u* and

(3.46) lim sup(§C(2) — (2), gn — #(2)) = lim (EC(2) — &(2), n; — ¢(2))-

n—00 =00
Using the weak continuity of ¢, we deduce that ¢(z,,) — ¢(u*). By (3.42), we obtain

Tn; — ¢(u*) and y,, — ¢(u*) due to (3.44).
In the sequel, we prove u* € Sol(C, ¢, ¢). Let ¢ be an operator defined by

@ [#@+ Ne(@), wec,
0, igcC.

Then, ¢ is maximal ¢-monotone. Let (@, u) € G(¢). Hence, u — ¢(@i) € Ne (@) and (¢(i) —
¢(zn,;),u — p(a)) > 0. From (3.12), we have

It follows that

(0(1) — g, =0T 4y 4 () — s, Blm) — i (n,) — EC(n)) > 0.

O, Ol
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. ] i (ﬁ(xm)

> (B(8) — $(an), (i) — (D) — G, T )
— 22 0(0) ~ G ) — an pln,) — EC(an,)
= <¢(ﬂ’) - ¢(xnl)7 (p(ﬂ) - (p(ﬂ?m» + @m - ¢<xn1>7 (p(.’[?nl))
647 = 25 (9(@) — s () — an,ln,) — ECLan,)
— (6(0) — g, L 20
> (i, = Do) pln,)) = (6(0) — g, L2200
O,

_ a—ﬂf((ﬁ(ﬂ) — Gy D@, ) — i, p(n,) — EC(20,)).

Since ||gn, —@(n,)|| = 0, V¥, = 0, liminf; .o apn, > 0and ¢(z,,) — ¢(u*), in (3.47), letting
i — 0o, we deduce that (¢(@ ) é(u*),u) > 0. Thus, u* € ¢~1(0). Hence, u* € Sol(C, ¢, ¢).

Next, we show ¢(u*) € Sol(C,%). By (3.13), yn, = projclin, — $n,¥(Jn,)]. Applying
(2.9), we have

Hence,

1. . . . .
(3.48) T<ym “Yn;, U — ym> + <¢(ym)v Yn; — ym> < <¢(ym)7 u— ym>a Vu e C.

Based on (3.44) and (3.48), we deduce
(3.49) lm inf (¢ (Jn, ), ¥ — Gn,) > 0, Yu € C.
71— 00

There are two cases: (i) iminf; ,o [|%(9n,)|| = 0 and (ii) lim inf; ,~ |[¥(9n,)|| > 0. For the
case (i), since §,, — ¢(u*) and ¢ satisfies condition (p), we conclude that (¢(u*)) = 0.
So, ¢(u*) € Sol(C, ).

Assume the case (ii) holds, that is, liminf; . [|¥(9n,)|| > 0. According to (3.49), we
receive

Let {w; } be a positive real number sequence such that @w; — 0 as i — co. Thanks to (3.50),
for each w;, there exists an integer N; > 0 such that

Thus,

(3.51) <1/)(37n )st = Gn;) + @il [ (Gn,)l| > 0, Vu € C, Vi > N;.

Set z,, = Hw(y ”2 forall i > 0. Then, (¢)(4n,), Zn,) = 1 for each i. Using (3.51), we obtain
(3.52) ((Gns)s v = Gn; + @ill$(Gn)[|2n;) > 0, Yu € C, Vi > N;.

Since 1 is quasimonotone, from (3.52), we have
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Owing to lim; o0 @;|Y(Gn, ) ||| 2, || = lim;— o0 ; = 0, letting ¢ — oo in (3.53), we get
(3.54) (W(u),u — d(u*)) >0, Vu € C,

which implies that ¢(u*) € Soly(C, ) C Sol(C, ). Therefore, u* € Sol(C, v, ¢)Np~ (Sol(C, 1)).
According to (3.17) and (3.46), we obtain

oy SIMEC() = 60 6120 = i EC(E) — 6(3) i 002
' = (€C(2) — 6(2), B(u") — 6(2)) < 0.
Let 2 be the unique solution of (3.17). Using (2.8) and (3.12), we get
190 — @(2)II* = [[projc[0,EC (xn) + (1 = V) ($(an) — anep(n))]
— proje[p(2) — (1 = V) anep(2)]1?
< Un(€C(zn) = EC(2),Gn — ¢(2)) + In(C(2) — ¢(2), In — 0(2))
+ (1 - ﬁn)<¢<xn) - an‘ﬁ(xn) - <¢(2) - an@( )) - (2)>
< 1= (@1 =65/7)0n]llg(zn) — d(2)ll|Gn — ¢(2)]

< L0000 o) — o3) 2 + L (2

It follows that
G0 — S < [1 = (1 = 0¢/7)0a]6(2n) — H(2)I?
+20n(8C(2) — ¢(2), Gn — ¢(2)).
Combining (3.31) and (3.56), we have
16(@ns1) — SN2 < (1= pu)[6(@n) — GG + pullin — S(Z)]2
(3.57) < [1— (1= 06/7)pudnl | 6(wn) — B(2)]?
+ 200 0n (§C(2) — (2), Gn — ¢(2)).

By virtue of Lemma 2.2 and (3.57), we conclude that ¢(z,,) — ¢(2) and x,, — 2.

Case (ii): For any No > m, there exists an integer j > Nj such that ||¢(z;) — ¢(2)]| <
lp(z41) — @(2)]]. Set Tp, = {||¢(zn) — #(2)||*}. Then, T; < Y, 41. Forall n > j, define an
integer sequence {I(n)} as follows I(n) = max{i € N|j <i¢ <n,T; < T;41}. Itis obvious
that I(n) satisfies the following properties: (i) I(n) < I(n + 1), (ii) lim, o I(n) = oo and
(i) Trny < Trmy+1, Y0 > J.

By the similar argument as that of Case (i), we can prove

(3.58) lim sup(€C(2) — 6(2), 1 n) — #(2)) <0

and

(3.56)

Trmy+1 < 1= (1= 08/T)0r(n)preny Trn)
+ 201(n)pr(n) (§C(Z) — 4(2), G1(n) — #(2))-
Note that Y7,y < Ty(;)41. This together with (3.59) implies that

(3.59)

Combining (3.58) and (3.60), we obtain lim sup,, ., T;(,) < 0 and so

n—oo
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Taking into account (3.58) and (3.59), we deduce lim sup,, , o, T7(n)+1 < limsup,,_, o Tren)-
This together with (3.61) implies that lim,, ;oo Y7(,)+1 = 0. By Lemma 2.3, we obtain
0 < Y, < max{Y;), Yi(n)+1}. Therefore, T,, — 0. That is, ¢(x,) — ¢(Z) and thus
2y, — Z. This completes the proof. O

In Algorithm 3.1, let ¢ be the identity operator with 7 = 1 and ¢ : C — H be ¥-inverse
strongly monotone operator. Then, we have the following algorithm and corollary.

Algorithm 3.2. Let z( be an initial point in C' and ¢, be a positive constant. Set n = 0.
Step 1. Let x,, be constructed. Then, compute

Qn = prOJC[ﬂngc(xn) + (1 - ﬁn)(xn - Oénsp(xn))]~
Step 2. Let ¢, be given. Compute

Yn = prOjC[gn - gn¢(@n)]a
and

En = (1= 0n)ln + 0nYn + 0nsn [t (Gn) — ¥ (yn)]-
Step 3. Compute

Tny1 = (]- - pn)xn + pni'n
Step 4. Update

1 Hyn anI f
Gl = {mm{% et i () # U(yn),

Sns else.
Write n := n + 1 and return to step 1.

Corollary 3.1. Suppose that =; := Sol(C, ¢) N Sold(C’ ) # 0. Then the sequence {x,,} gener-
ated by Algorithm 3.2 converges strongly to 2 = projz,C(2).

4. CONCLUDING REMARKS

This paper is devoted to the investigation and analysis of the split variational inequality
problem (1.7), which was originally introduced in [8] with the transformation ¢ being a
bounded linear operator. However, in our result, we consider a more general case that the
transformation ¢ is nonlinear. Namely, if we choose ¢ to be a bounded linear operator,
then the investigated problem (1.7) reduces to the well-known problem proposed in [8].
In this respect, our results extend and improve some existing results in the literature ([8,
16, 17, 20]).

At the same time, in order to prove the convergence of the sequence {z,}, a common
condition Sol(C, 1) C Solg(C, ) is used. In this paper, we remove this assumption. As a
matter of fact, since 1 is quasimonotone, the assumption Sol(C, ) C Soly(C, 1)) may be
not hold.

Generally speaking, in order to prove w(x,) belongs to the solution set, ¢) should be
sequentially weakly continuous (see [3, 33]). In this paper, we replace this conditions by
a weaker condition (p). It is easy to verify that if ¢ satisfies sequential weak continuity,
then ¢ possesses the property (p). Our method can be used to relax the sequential weak
continuity imposed on 1.

With these advantages in hand, we show that the introduced algorithm [Algorithm 3.1]
converges strongly to a solution of the split variational inequality problem (1.7) which also
solves VI (3.17) under some mild conditions.

An interesting problem arises: could we further weaken or remove the condition (p)?
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