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Generalized perturbed contractions with related fixed point
results

ADRIAN NICOLAE BRANGA and ION MARIAN OLARU

ABSTRACT. In this paper, we introduce the concept of (F,G)-perturbed contraction in a metric space and we
establish some fixed point theorems which extends the results from Branga, A. N. Olaru, I. M. Some Fixed Point
Results in Spaces with Perturbed Metrics. Carpathian J. Math. 38 (2022), no. 3, 641–654 and Olaru, I. M.; Secelean,
N. A. A new approach of some contractive mappings on metric spaces. Mathematics 9 (2021), 1433. Also, an
application to an integral equation and some illustrative examples are given throughout the paper.

1. INTRODUCTION

Wardowski [15] introduced a new type of contractive self-mapping T defined on a
metric space (X, d), the so called F -contraction. This is defined by the inequality

τ + F (d(Tx, Ty)) ≤ F (d(x, y)), for all x, y ∈ X,Tx ̸= Ty,

where τ > 0 and F : (0,∞) → R satisfies the conditions (F1)-(F3) defined bellow:

(F1) F is a strictly increasing function;
(F2) for each sequence {αn}n∈N of positive numbers, we have lim

n→∞
αn = 0 if and only

if lim
n→∞

F (αn) = −∞;

(F3) there exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

Wardowski proved that, whenever (X, d) is complete, every F -contraction has a unique
fixed point, which is the limit of the Picard iterations. This result has been expanded by
weakening the condition (F1)-(F3) or by defining new contractive conditions. A survey
regarding the extensions of F -contractions is given in Karapinar et al. [4]. Later on, Olaru
and Secelean [8] generalized the concept of F -contractions and established a fixed point
theorem that expands some known results in the literature. Related to the fixed point
theory for an operator T : X → X on altered metric space we mention that it has been
developed firstly by Delbosco [3], Skof [13], M. S. Khan, M. Swaleh and S. Sessa [5] by
altering the metric with some distance control function ϕ : R+ → R+. A survey related
to fixed point theorems by altering distances between points in metric space can be found
on Jha et al. [6]. Next by using the approach from Nussbaum [7], Rus and Şerban [12] we
introduce the concept of (F,G)-perturbed contraction in a metric space and we establish
some fixed point theorems in less conditions than those used by Olaru and Secelean [8],
which extends some fixed point results in the literature. Also, some illustrative examples
are given throughout the paper, together with an application to an integral equation.
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2. RESULTS

Definition 2.1. Let us consider F,G : (0,∞) → R. We say that (F,G) ∈ G0 if the following
conditions are satisfied:
(H1) for each r ≥ t > 0 we have F (r) > G(t);
(H2) lim inf

s↘t

(
F (s)−G(s)

)
> 0 for each t > 0.

Remark 2.1. ([8]) Under hypothesis (H1), condition (H2) is equivalent to
(H ′

2) for each sequence {tn}n∈N ⊂ (0,∞), such that tn ↘ t > 0, we have∑
n≥1

(F (tn)−G(tn)) = ∞.

Definition 2.2. ([8]) We say that a function F : (0,∞) → R satisfies property (P) if, for every
monotonically decreasing sequence {tk}k∈N of positive numbers such that F (tk) −→

k
−∞,

one has tk −→
k

0.

Example 2.1. Let us consider F,G : (0,∞) → R defined by

F (t) = ln
3t2 + 4t

t+ 1
,

G(t) = ln 2t.

Then, F is monotone, satisfies property (P ) and (F,G) ∈ G0.

Proof. We deduce:

(H1) If r ≥ t > 0, then F (r) = ln 3r2+4r
r+1 ≥ ln 3t2+4t

t+1 > ln 2t = G(t).
(H2) Let any t > 0. Then,

F (t)−G(t) = ln
3t+ 4

2t+ 2
> ln

3

2

and hence, lim inf
s↘t

(
F (s)−G(s)

)
≥ ln 3

2 > 0.

□

In the following definition we introduce a new type of contraction self-mappings.

Definition 2.3. Let us consider (X, d) a metric space and T : X → X an operator. We say
that T is a (F,G)-perturbed contraction if there exist (F,G) ∈ G0 and g : (0,∞) → (0,∞)
a strictly increasing and continuous function, such that

(2.1) F (g(δ(T (B)))) ≤ G(g(δ(B))), for all B ∈ Pb(X), δ(T (B)) ̸= 0,

where δ : P(X) → R+ ∪ {∞} is defined by

δ(A) := sup{d(a, b) | a, b ∈ A} and Pb(X) := {Y ⊆ X | Y is bounded}.

Remark 2.2. If T : X → X is an operator and B ∈ Pb(X) satisfies the condition δ(T (B)) ̸=
0, then δ(B) ̸= 0.

Proof. Let us suppose that δ(B) = 0. It follows that B has a single element. Therefore,
T (B) contains a unique point, hence δ(T (B)) = 0, which is in contradiction with our
hypothesis. Consequently, δ(B) ̸= 0. □

Our first main result is the next one

Theorem 2.1. Let us consider (X, d) a complete metric space, (F,G) ∈ G0 and T : X → X an
operator satisfying the conditions:
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(i) there exists x0 ∈ X such that the sequence {Tn(x0)}n∈N is bounded;
(ii) F verifies the property (P) and G is a monotonically increasing function;

(iii) T is a (F,G)-perturbed contraction.
Then T has an unique fixed point x⋆ ∈ X and the sequence {Tn(x0)}n∈N is convergent to x⋆ ∈ X .

Proof. First, we will prove that T is a contractive operator. Let us consider x, y ∈ X,T (x) ̸=
T (y), be arbitrary elements. We deduce that x ̸= y. Defining the set B := {x, y}, we ob-
tain: B ∈ Pb(X), δ(B) = d(x, y) ̸= 0, T (B) = {T (x), T (y)}, δ(T (B)) = d(T (x), T (y)) ̸= 0.
By using the relation (2.1) we find F (g(d(T (x), T (y)))) ≤ G(g(d(x, y))). Considering
the hypothesis (H1), the previous inequality implies that g(d(T (x), T (y))) < g(d(x, y)).
Taking into account that g : (0,∞) → (0,∞) is a strictly increasing function, we get
d(T (x), T (y)) < d(x, y). Since the elements x, y ∈ X,T (x) ̸= T (y), are chosen arbitrar-
ily, it follows that

(2.2) d(T (x), T (y)) < d(x, y), for all x, y ∈ X,T (x) ̸= T (y),

hence the operator T is contractive.
Further, we will show that T has at most one fixed point. Let us suppose that T has two

distinct fixed points, i.e. there exist x⋆, y⋆ ∈ X such that x⋆ ̸= y⋆, x⋆ = T (x⋆), y⋆ = T (y⋆).
By using the relation (2.2) we deduce

d(x⋆, y⋆) = d(T (x⋆), T (y⋆)) < d(x⋆, y⋆),

which is a contradiction. Therefore, T has at most one fixed point.
Since the sequence {Tn(x0)}n∈N is bounded, it follows that there exists a bounded set

A ⊂ X such that {Tn(x0)}n∈N ⊆ A. Next, we will prove that T (A) is a bounded set. The
following cases may occur:

a) if δ(T (A)) ̸= 0, then by using the relation (2.1) we deduce that F (g(δ(T (A)))) ≤
G(g(δ(A))). Considering the hypothesis (H1), we obtain g(δ(T (A))) < g(δ(A)),
and taking into account that g : (0,∞) → (0,∞) is a strictly increasing function,
we find δ(T (A)) < δ(A). Since A is a bounded set, we get δ(A) < ∞, hence
δ(T (A)) < ∞, thus T (A) is a bounded set.

b) if δ(T (A)) = 0, then T (A) has a single point, hence T (A) is a bounded set.
Let us define the sequence {An}n∈N∗ by

A1 = T (A), A2 = T (A1 ∩A), · · · , An = T (An−1 ∩A), n ∈ N∗ \ {1}.

Applying the mathematical induction method we deduce the following properties of the
sequence {An}n∈N∗ :

1) An ⊆ An−1 for all n ∈ N∗ \ {1};
2) Tn(x0) ∈ An for all n ∈ N∗, hence An ̸= ∅ for all n ∈ N∗;
3) An ⊆ T (An−1) for all n ∈ N∗ \ {1};
4) An ⊆ T (A) for all n ∈ N∗;
5) An is a bounded set for all n ∈ N∗.

We distinguish the following cases:
1. If there exists k ∈ N∗ such that δ(T (Ak)) = 0, then the set T (Ak) contains a sin-

gle point. On the other hand, according to 2), T k(x0) ∈ Ak. Therefore, T (Ak) =
{T k(x0)}. By using 2), 3) and the above equality we obtain T k+1(x0) ∈ Ak+1 ⊆
T (Ak) = {T k(x0)}. It follows that T k+1(x0) = T k(x0), hence T (T k(x0)) = T k(x0),
thus T k(x0) is a fixed point of the operator T . Since T has at most one fixed point,
we find that T k(x0) is the unique fixed point of the operator T . Moreover, ac-
cording to 2), 3) and 1), for every n ≥ k + 1 we get Tn(x0) ∈ An ⊆ T (An−1) ⊆
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T (Ak) = {T k(x0)}, thus Tn(x0) = T k(x0) for all n ≥ k+1. Therefore, the sequence
{Tn(x0)}n∈N is convergent to x⋆ := T k(x0). The proof is finished in this case.

2. If δ(T (An)) ̸= 0 for all n ∈ N∗. According to Remark 2.2 we deduce δ(An) ̸= 0 for
all n ∈ N∗. Let us define the sequence dn := δ(An) > 0 for all n ∈ N∗. By using
1) we find δ(An) ≤ δ(An−1) for all n ∈ N∗ \ {1}, hence dn ≤ dn−1 for all n ∈ N∗ \
{1}, i.e. {dn}n∈N∗ is a monotonically decreasing sequence. Because the sequence
{dn}n∈N∗ is bounded from below by 0, it follows that {dn}n∈N∗ is convergent to a
point d ≥ 0. In the sequel, we will prove that d = 0. Let us suppose that d > 0.
As g : (0,∞) → (0,∞) is a strictly increasing and continuous function, we get:
g(dn) > 0 for all n ∈ N∗, {g(dn)}n∈N∗ is a monotonically decreasing sequence
and {g(dn)}n∈N∗ is convergent to the point g(d) > 0. From the relation (2.1) and
considering that G is a monotonically increasing function, g is a strictly increasing
function, we deduce that

F (g(dn)) = F (g(δ(An))) = F (g(δ(T (An−1 ∩A)))) ≤
G(g(δ(An−1 ∩A))) ≤ G(g(δ(An−1))) = G(g(dn−1)) for all n ∈ N∗ \ {1},

hence

F (g(dn))− F (g(dn−1)) ≤ G(g(dn−1))− F (g(dn−1)) for all n ∈ N∗ \ {1}.
Taking into account the previous inequality and the hypothesis (H ′

2) we obtain

F (g(dn))− F (g(d0)) =
n∑

k=1

(F (g(dk))− F (g(dk−1))) ≤
n∑

k=1

(G(g(dk−1))− F (g(dk−1))) =

−
n∑

k=1

(F (g(dk−1))−G(g(dk−1))) → −∞ as n → ∞.

It follows that lim
n→∞

F (g(dn)) = −∞ and considering that F verifies the property

(P), we find lim
n→∞

g(dn) = 0. As g : (0,∞) → (0,∞) is a strictly increasing and
continuous function, we get lim

n→∞
dn = 0, hence d = 0, which is in contradiction

with our assumption d > 0. Therefore, d = 0, i.e. lim
n→∞

dn = 0.

Further, we show that {Tn(x0)}n∈N∗ is a Cauchy sequence. By using 2) and
1) we deduce Tn+p(x0) ∈ An+p ⊆ An, Tn(x0) ∈ An for all n, p ∈ N∗. Hence,
d(Tn+p(x0), T

n(x0)) ≤ δ(An) = dn for all n, p ∈ N∗. Because dn → 0 as n → ∞, it
follows that {Tn(x0)}n∈N∗ is a Cauchy sequence. From the completeness of X we
obtain that there exists x⋆ ∈ X such that Tn(x0) → x⋆ as n → ∞.

Finally, we will prove that x⋆ is the unique fixed point of T . As the operator T
is contractive, it is continuous. Considering 2) and 1) we find

0 ≤ d(Tx⋆, x⋆) = lim
n→∞

d(T (Tn(x0)), T
n(x0)) = lim

n→∞
d(Tn+1(x0), T

n(x0))

≤ lim
n→∞

δ(An) = lim
n→∞

dn = 0.

Therefore, T (x⋆) = x⋆, i.e. x⋆ is a fixed point of T . Since T has at most one fixed
point, we find that x⋆ is the unique fixed point of the operator T . Moreover, the
sequence {Tn(x0)}n∈N is convergent to x⋆. The proof is also complete in this case.

□

A direct consequence of the previous theorem is the following

Corollary 2.1. Let us consider (X, d) a complete metric space, (F,G) ∈ G0 and the operators
T̃ : X × · · · ×X → X , T : X → X , T (x) = T̃ (x, x, · · · , x) satisfying the conditions:
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(i) there exists x0 ∈ X such that the sequence {Tn(x0)}n∈N is bounded;
(ii) F verifies the property (P) and G is a monotonically increasing function;

(iii) T is a (F,G)-perturbed contraction.
Then there exists a unique point x⋆ ∈ X such that x∗ = T̃ (x∗, · · · , x∗) and the sequence
{Tn(x0)}n∈N is convergent to x⋆ ∈ X .

Proof. The conclusion follows from Theorem 2.1. □

Lemma 2.1. Let us consider g : (0,∞) → (0,∞) a increasing and continuous function and
A ⊂ (0,∞) a bounded set. Then g(supA) = sup g(A).

Proof. Let us denote M = supA. Then, for each x ∈ A we have g(x) ≤ g(M), which
implies that sup g(A) ≤ g(M) = g(supA). On the other hand, from definition of M we
have: for ε > 0 there exists xε ∈ A such that M − ε < xε. Therefore g(M − ε) < g(xε) ≤
sup g(A). Since g is continuous, we get g(supA) = g(M) ≤ sup g(A). □

Example 2.2. Let us consider τ > 0, F,G : (0,∞) → R defined by:

F (t) =

{
τ − 1

t , t ∈ (0, 1
τ ]

τ − 2
t , t ∈ ( 1τ ,∞),

G(t) = −2

t
,

Then:
(i) F is not increasing, satisfies the property (P) and (F,G) ∈ G0;

Proof. (i) We remark that the function F is not increasing and it satisfies the property
(P ). Also, (F,G) ∈ G0 because the hypotheses (H1), (H2) are fulfilled.

(H1) Let us consider r ≥ t > 0. The following cases can occur:
Case 1: r, t ∈ (0, 1

τ ] ⇒ F (r) = τ − 1
r > − 1

r > − 2
t = G(t);

Case 2: r, t ∈ ( 1τ ,∞) ⇒ F (r) = τ − 2
r > − 2

r ≥ − 2
t = G(t);

Case 3: t ∈ (0, 1
τ ] and r ∈ ( 1τ ,∞) ⇒ F (r) = τ − 2

r > − 2
r > − 2

t = G(t).
(H2) Choose t > 0 be arbitrary. Then

F (s)−G(s) =

{
τ + 1

s , s ∈ (0, 1
τ ]

τ , s ∈ ( 1τ ,∞)

hence, lim inf
s↘t

(
F (s)−G(s)

)
≥ τ > 0.

□

Example 2.3. Let us consider the linear space C([0, 1],R) = {f : [0, 1] → R | f is continuous
on [0, 1]}, endowed with the infinity norm ∥ · ∥∞ : C([0, 1],R) → R+, ∥x∥∞ = sup

t∈[0,1]

|x(t)|

and the induced metric d : C([0, 1],R) × C([0, 1],R) → R+, d(x, y) = ∥x − y∥∞. It is
well known that the metric space (C([0, 1],R), d) is complete. We choose τ > 0, F,G :
(0,∞) → R, K ∈ C([0, 1]× [0, 1]×R,R), f ∈ C([0, 1],R) and the operator T : C([0, 1],R) →
C([0, 1],R), that are defined by:

F (t) = τ − 1

t

G(t) = −1

t
,

T (x)(t) = f(t) +

t∫
0

K(t, s, x(s))ds, t ∈ [0, 1].
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We suppose that, for all t, s ∈ [0, 1] and u, v ∈ R, we have

(2.3) |K(t, s, u)−K(t, s, v)|2 ≤ |u− v|2

τ |u− v|2 + 1
.

Then:
(i) F satisfies the property (P) and (F,G) ∈ G0;

(ii) T is a (F,G)-perturbed contraction.

Proof. (i) We remark that the function F satisfies the property (P ). Also, (F,G) ∈ G0

because the hypotheses (H1), (H2) are fulfilled.
(H1) Let us consider r ≥ t > 0. Then F (r) = τ − 1

r > − 1
r > − 1

t = G(t);
(H2) Choose t > 0 be arbitrary. Then F (s)−G(s) = τ and therefore,

lim inf
s↘t

(
F (s)−G(s)

)
= τ > 0

(ii) Let us consider B ⊂ C([0, 1],R) an arbitrary bounded set satisfying δ(T (B)) ̸= 0.
Then, for all x, y ∈ B and t ∈ [0, 1], via Cauchy-Schwarz-Buniakowski inequality,
we deduce

|T (x)(t)− T (y)(t)|2 ≤
t∫
0

|K(t, s, x(s))−K(t, s, y(s))|2ds ≤
t∫
0

|x(s)−y(s)|2
τ |x(s)−y(s)|2+1ds ≤

∥x−y∥2
∞

τ∥x−y∥2
∞+1 .

Passing to sup
t∈[0,1]

in the above inequality and using Lemma 2.1 we obtain

∥T (x)− T (y)∥2∞ ≤ ∥x− y∥2∞
τ∥x− y∥2∞ + 1

.

Considering sup
x,y∈B

and applying again Lemma 2.1, from the previous relation we

find

δ2(T (B)) ≤ δ2(B)

τδ2(B) + 1
⇒ τ − 1

δ2(T (B))
≤ − 1

δ2(B)

thus
F (δ2(T (B))) ≤ G(δ2(B)).

Therefore, there exist (F,G) ∈ G0 and g : (0,∞) → (0,∞), g(t) = t2 a strictly
increasing and continuous function, such that

F (g(δ(T (B)))) ≤ G(g(δ(B))), for all B ∈ Pb(C([0, 1],R)), δ(T (B)) ̸= 0,

hence T is a (F,G)-perturbed contraction.
□

Lemma 2.2. [14] Let {xn}n∈N be a sequence of elements from a metric space (X, d) and ∆ be a
subset of (0, ν), ν ∈ R+, such that (0, ν)\∆ is dense in (0, ν). If d(xn, xn+1)

n→ 0 and {xn}n∈N
is not a Cauchy sequence, then there exists η ∈ (0, ν)\∆ and the sequences of natural numbers
{mk}k∈N, {nk}k∈N such that

(1) d(xmk
, xnk

) ↘ η, k → ∞,
(2) d(xmk+p, xnk+q) → η, k → ∞, where p, q ∈ {0, 1}.

Theorem 2.2. Let us consider (X, d) a complete metric space, (F,G) ∈ G0, g : (0,∞) → (0,∞)
a strictly increasing and continuous function and T : X → X such that:

(i) the set of continuity points of F ◦ g is dense in (0,∞);
(ii) F satisfies property (P);

(iii) F (g(d(Tx, Ty))) ≤ G(g(d(x, y))) for all x, y ∈ X,x ̸= y.
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Then T has a unique fixed point x⋆ ∈ X and for every x0 ∈ X the sequence {Tn(x0)}n∈N is
convergent to x⋆ ∈ X .

Proof. First of all, we remark that the hypothesis (H2) and the condition (iii) lead us to the
fact that the operator T is contractive, i.e

(2.4) d(Tx, Ty) < d(x, y), for all x, y ∈ X,x ̸= y.

The relation (2.4) implies that T has at most one fixed point.
In order to show that T has a fixed point, let x0 ∈ X be an arbitrary element. We define

a sequence {xn}n∈N by xn = Txn−1, n ≥ 1, and denote dn = d(xn+1, xn), n ≥ 0. If there
exists n0 ∈ N such that xn0+1 = xn0 then xn0 is a fixed point of T . Next, we suppose that
xn+1 ̸= xn for each n ∈ N. Then dn > 0 for all n ∈ N and taking into account the relation
(2.4) we conclude that there is d ≥ 0 such that dn ↘ d.

Next, we state that d = 0. Suppose that d > 0. Since g is a strictly increasing and con-
tinuous function, we deduce g(dn) ↘ g(d). Indeed, relation (iii) implies that F (g(dn)) ≤
G(g(dn−1)) for all n ≥ 1. From the above inequality we obtain that

F (g(dn))− F (g(dn−1)) ≤ G(g(dn−1))− F (g(dn−1)),

for each n ≥ 1. Therefore, using the hypothesis (H ′
2) we deduce

F (g(dn))− F (g(d0)) =

n∑
k=1

(F (g(dk))− F (g(dk−1))) ≤

n∑
k=1

(G(g(dk−1))− F (g(dk−1))) =

n∑
k=1

(G(g(dk−1))− F (g(dk−1))) → −∞.

It follows that lim
n→∞

F (g(dn)) = −∞ and considering the condition (ii) and the fact that g
is a strictly increasing and continuous function, we get lim

n→∞
dn = 0.

Now, we assume that {xn}n∈N is not Cauchy sequence. Let us consider ∆ the set of
discontinuities of F ◦ g. According to Lemma 2.2 applied for (0,∞)\∆, one can find
η ∈ (0,∞)\∆ and the sequences {mk}k∈N, {nk}k∈N such that

d(xmk
, xnk

) ↘ η, d(xmk+1, xnk+1) → η, k → ∞.

Since η > 0, there is K ∈ N such that d(xmk+1, xnk+1) > 0 for all k ≥ K. Therefore, for all
k ≥ K we get

F (g(d(xmk+1, xnk+1))) ≤ G(g(d(xmk
, xnk

))),

hence
−G(g(d(xmk

, xnk
))) ≤ −F (g(d(xmk+1, xnk+1)),

thus
F (g(d(xmk

, xnk
)))−G(g(d(xmk

, xnk
))) ≤

F (g(d(xmk
, xnk

)))− F (g(d(xmk+1, xnk+1)))).

It follows that
F (g(d(xmk

, xnk
)))−G(g(d(xmk

, xnk
))) ≤

lim sup
k→∞

[F (g(d(xmk
, xnk

)))−G(g(d(xmk
, xnk

)))] ≤

lim sup
k→∞

[F (g(d(xmk
, xnk

)))− F (g(d(xmk+1, xnk+1))))] = F (g(η))− F (g(η)) = 0,

which is a contradiction with (H2). Therefore, {xn}n∈N is a Cauchy sequence and from
the completeness of X there exists x⋆ ∈ X such that xn → x⋆ as n → ∞. Finally, the
condition (2.4) yields that T is continuous and

d(Tx⋆, x⋆) = lim
n→∞

d(Txn, xn) = lim
n→∞

d(xn+1, xn) = 0.
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Thus, Tx⋆ = x⋆, i.e. x⋆ is the unique fixed point of T . □

3. CONCLUSIONS

In this paper we have extended the results from [8] and [2] by proving an existence
and uniqueness result of fixed point for an operator T : X → X which satisfies a general
contractive condition of type

F (g(δ(T (B)))) ≤ G(g(δ(B))), for all B ∈ Pb(X), δ(T (B)) ̸= 0,

where F,G, g, δ are given by Definition 2.3. The above result has been applied to study
the existence and uniqueness of fixed point for operators defined on cartesian product of
perturbed metric spaces. Further we provide an existence and uniqueness result of the
fixed point for the operator T : X → X which satisfies a contractive condition of type
F (g(d(Tx, Ty))) ≤ G(g(d(x, y))) for all x, y ∈ X,x ̸= y. Also, we highlighted an operator
which is an (F,G) − contraction that is not a contraction. As further research direction,
by following Akkouchi [1] and Pant et al. [9], [10], [11] we would like to extend the main
results to common fixed point theory.
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