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Geometric constant on Riemannian manifold evolves by
geometric flow

APURBA SAHA1, SHAHROUD AZAMI2 , LAURIAN-IOAN PIŞCORAN 3 and SHYAMAL
KUMAR HUI1

ABSTRACT. In this article, we consider (Mn, g(t)) an n-dimensional closed Riemannian manifold whose
metric g(t) evolves by the abstract geometric flow and the geometric constant λb

a as the lowest constant such
that the equation

−∆u+ au log u+ bSu = λb
au

with
∫
M u2dµ = 1 has a positive solution, where a (> 0) and b are two real constants. Here we find the

evolution formula for λb
a on (Mn, g(t)) evolving along the abstract geometric flow.

1. INTRODUCTION

The study of geometric flows plays an important role in Riemannian manifold. There
are many important geometric flows to gain information of the manifolds. Here we con-
sider geometric flow in general way. Let Mn be a closed Riemannian manifold of dimen-
sion n whose Riemannian metric g(t) evolves by the abstract geometric flow

(1.1)
∂

∂t
gij = −2Sij , t ∈ [0, T ),

where T (> 0) is the maximum time of existence and Sij is a time dependent symmetric
(0, 2)-tensor on (Mn, g(t)). Some examples of geometric flows are the Ricci flow when
Sij = Rij , i.e., the Ricci curvature tensor, the extended Ricci flow when Sij = Rij −
α∇iϕ⊗∇jϕ (where α is a positive constant depending only on n and ϕ = ϕ(t) is a smooth
scalar function) etc. Let us denote S = gijSij , i.e., the trace of Sij with respect to g(t).

Recently, many authors studied the evolution formula of the eigenvalues of different
operators along many geometric flows such as the Ricci flow, extended Ricci flow, Ricci-
Bourguignon flow, mean curvature flow etc., see [4, 5, 8, 12], after the work of Perelman
in [17], where he showed that the lowest eigenvalue of −∆+R/4 (R is scalar curvature) is
monotone nondecreasing along the Ricci flow. Recently in [3], Abolarinwa et al. studied
the evolution, monotonicity and differentiability of the first eigenvalue of the p-Laplacian
on (Mn, g(t)), whose metric g(t) evolves by the generalized abstract geometric flow. It
is mentioned that several estimates have been studied for nonlinear partial differential
equations in [1, 2]. In [7], Daneshvar et al. constructed various monotonicity formulas for
the lowest constant λba(g) under the Ricci-Bourguignon flow such that the equation

−∆u+ au log u+ bRu = λba(g)u with
∫
M

u2dµ = 1
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has a positive solution, where a and b are two real constants. In [11], Huang et al. studied
the first variation formula for the lowest λba(g) such that the following nonlinear equation

−∆u+ au log u+ bRu = λba(g)u with
∫
M

u2dµ = 1

has a positive solution along the Ricci flow and the normalized Ricci flow. Recently, mono-
tonicity of a geometric constant along the extended Ricci flow has been studied in [18].
Motivated by the aforementioned works, in this article we consider λba to be the lowest
constant such that the following nonlinear equation

(1.2) −∆u+ au log u+ bSu = λbau

with the normalization condition

(1.3)
∫
M

u2dµ = 1,

where a (> 0) and b are two real constants, has a positive solution. Here we have ob-
tained the evolution formula for the lowest constant λba(g) such that equation (1.2) with
the normalization condition (1.3) has a positive solution, when the Riemannian manifold
(Mn, g(t)) evolves along the abstract geometric flow (1.1). Also, we generalize some re-
sults in [11]. We consider the following functional

(1.4) Fc
d(g, ϕ) =

∫
M

(|∇ϕ|2 + cS − d(ϕ+ 1))e−ϕdµ,

where c and d are two real constants, under the abstract geometric flow coupled to a
nonlinear backward type heat equation

(1.5)

{
∂
∂tgij = −2Sij ,
∂
∂tϕ = −∆ϕ+ |∇ϕ|2 + aϕ− S.

Finally we have obtained the first variation formula of the functional (1.4) under the sys-
tem (1.5) and we proved that this functional is nondecreasing for d = nac

8 along the flow.

2. PRELIMINARIES

Let us consider a local coordinate system {xi} in a neighborhood of every point x ∈
Mn, whereMn is an n-dimensional closed Riemannian manifold with Riemannian metric
gij . We denote gij = (gij)

−1, the inverse metric matrix and ∇ as the covariant derivative.
Note that for a smooth function u

∇iu = ui =
∂u

∂xi
and |∇u|2 = gij∇iu∇ju = ∇iu∇iu = uiui.

The Riemannian volume measure dµ on Mn is given by dµ =
√

|gij |dxi. The divergence
of a (0, 2)-tensor S is defined by div(S)k = gij∇iSjk. We denote time derivative by ∂

∂tu =
ut. In the following Lemma some geometric quantities are given when the Riemannian
manifold (Mn, g(t)) evolves along the abstract geometric flow (1.1).

Lemma 2.1. [3] Suppose g(t) is a solution of the abstract geometric flow (1.1). Then the following
equations hold:

(i)
∂

∂t
gij = 2gikgjlSkl,(2.6)

(ii)
∂

∂t
|∇u|2 = 2Sijuiuj + 2⟨∇ut,∇u⟩,(2.7)

(iii)
∂

∂t
dµ = −Sdµ.(2.8)
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Along the abstract geometric flow (1.1), S evolves by

∂

∂t
S =

∂

∂t
(gijSij) = 2|Sij |2 + T ,

where we take Tij =
∂Sij

∂t and T = gij
∂Sij

∂t . Similar to an error term appeared in [15,
Lemma 1.6], here we have used an error term for any time dependent vector X by

(2.9) D(X) = (Rij − Sij)(X,X) + ⟨∇S − 2 div S, X⟩+ 1

2
(T −∆S).

Examples of Geometric flows:
A. Hamilton’s Ricci flow: [10] For Hamilton’s Ricci flow

(2.10)
∂

∂t
gij = −2Rij ,

we have Sij = Rij , the Ricci tensor and S = R, the scalar curvature on M . The evolution
equation for R is given by ∂R

∂t = 2|Ric|2 +∆R, which shows that T = ∆R. Now by using
∇R = 2div(Ric) we get

(2.11) D(X) = 0, T −∆S = 0.

B. Extended Ricci flow:[14] Extended Ricci flow is given by the following equations

(2.12)

{
∂
∂tg = −2Ric+ 2α∇ϕ⊗∇ϕ,
∂
∂tϕ = ∆ϕ,

where α is a positive constant depending only on n, ϕ = ϕ(t) is a smooth scalar function
defined on M . Thus in our notations we have S = Ric − αdϕ ⊗ dϕ and S = R − α|∇ϕ|2,
which gives

∇S − 2div(S) = 2α∆ϕ∇ϕ,(2.13)

T = ∆S + 2α(∆ϕ)2.(2.14)

Thus the error term is

(2.15) D(X) = α(⟨∇ϕ,X⟩+∆ϕ)2.

C. Ricci-harmonic map flow : [16] Let (Mn, g) and (Nm, h) be two closed Riemannian
manifolds of dimension n and m respectively and ψ : M → N a family of 1-parameter
smooth maps. Then the couple (g(t), ψ(t)) is said to be a solution of the Ricci-harmonic
map flow if it satisfies the following system of nonlinear parabolic equations

(2.16)

{
∂
∂tg = −2Ric+ 2α(t)∇ψ ⊗∇ψ,
∂
∂tψ = τgψ,

where τg denotes the tension field of the map ψ with respect to the Riemannian metric
g(t) and α(t) > 0 is a time dependent constant. Here we have Sij = Rij −α∂iψ⊗ ∂jψ and
S = R− α|∇ψ|2 and

(2.17)
∂

∂t
S = ∆S + 2|Sij |2 + 2α|τgψ|2 − 2α|∇ψ|2.

Then after some computations, we get

(2.18) D(X) = α|τgψ +∇Xψ|2 −
1

2
α

′
|∇ψ|2.

D. Lorentzian mean curvature flow: [13] Let Mn be a family of space-like hypersurfaces
of a Lorentzian manifold Ln+1. Let F (t, x) be the position function of Mn in Ln+1. If
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at F (t, x) the outer normal vector and mean curvature denoted by ν(t, x) and H(t, x)
respectively, then the Lorentzian mean curvature flow is given by the following equation

∂

∂t
F (t, x) = H(t, x)ν(t, x).

Then the induced metric g(t) evolves by ∂
∂tgij = 2Hhij , where hij are the components of

the second fundamental form H on Mn. Let R̃ic and R̃iem be the Ricci and Riemannian
curvature tensor of Ln+1 respectively. Then we have

T −∆S = 2H2|hij |2 + 2|∇H|2 + 2H2R̃ic(ν, ν),

D(X) = |∇H + h(X, ·)|2 + R̃ic(Hν +X,Hν +X) + R̃iem(X, ν, ν,X).

E. Yamabe flow: [6, 19] Yamabe flow is given by the following evolution equation
∂

∂t
gij = −Rgij ,

where R is the scalar curvature. By [6], we have ∂
∂tR = (n − 1)∆R + R2. By comparing

with the flow (1.1) we have Sij = 1
2Rgij . Thus we have ∂

∂tS = n(n−1)
2 ∆R + n

2R
2. Hence

we can conclude

T −∆S =
n(n− 2)

2
∆R and ⟨∇S − 2div(S), X⟩ = n− 2

2
⟨∇R,X⟩.

3. MAIN RESULTS

The lowest constant λba(g), such that the equation (1.2) with (1.3) has a positive solution
is defined by

λba(g) = inf{Gb
a(g, u) :

∫
M

u2dµ = 1, u > 0, u ∈ C∞(M)},

where
Gb
a(g, u) =

∫
M

(|∇u|2 + au2 log u+ bSu2)dµ.

Now we show the existence of λba(g) for any closed Riemannian manifold Mn. For this
we only need to prove that the set

{Gb
a(g, u) :

∫
M

u2dµ = 1, u > 0, u ∈ C∞(M)}

is bounded below. Applying the trick used in [7], it is easy to see that the set {
∫
M
au2

log udµ:
∫
M
u2dµ = 1, u > 0, u ∈ C∞(M)} is bounded below for a > 0. Also from ([9],

pg. 13, eq. (7.35)) we can say that the set {
∫
M
(|∇u|2 + bSu2)dµ :

∫
M
u2dµ = 1, u > 0, u ∈

C∞(M)} takes its infimum. Thus we have that the set {Gb
a(g, u) :

∫
M
u2dµ = 1, u > 0, u ∈

C∞(M)} is bounded below and consequently λba(g) exists.
Using the method of [7, Lemma 2.1] and by taking the conditions (1 + ϵ)−1g1 ≤ g2 ≤
(1 + ϵ)g1 and S(g1) − ϵ ≤ S(g2) ≤ S(g1) + ϵ, it can be shown that the geometric constant
λba is continuous function with respect to the C2-topology.

Till now it is not known that the lowest geometric constant λba such that the equation
(1.2) with the normalization condition (1.3) has a positive solution, and corresponding
function u are differentiable along t or not. To overcome this problem of differentiability
we proceed further as [9]. According as [9, Theorem 7.2], for any t0 ∈ [0, T ), there exists a
smooth function w(t) > 0 satisfying

∫
M
w2(t)dµ = 1 and w(t0) = u(t0). Let

ψ(t) =

∫
M

[−w(t)∆w(t) + aw2(t) logw(t) + bSw2(t)]dµ.
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Then ψ(t) is a smooth function by definition. And at a time t0, we can conclude that
λba(t0) = ψ(t0).

Theorem 3.1. We assume that the geometric flow (1.1) has a solution on the interval [0, T ),
where T (> 0) is the maximum time of existence. Let g(t), t ∈ [0, T ), be a solution of (1.1)
on a closed Riemannian manifold Mn and λba(g) be the lowest geometric constant such that the
equation (1.2) with the normalization condition (1.3) has a positive solution. Suppose that u(t0)
is the corresponding solution to λba(t0). Then we have

d

dt
ψ(t)|t=t0 =

1

2

∫
M

|Sij +∇i∇jf +
a

2
gij |2e−fdµ+ (b− 1

4
)

∫
M

(T −∆S)e−fdµ(3.19)

+ (2b− 1

2
)

∫
M

|Sij |2e−fdµ+

∫
M

1

2
D(−∇f)e−fdµ− na2

8
,

where f = −2 logw.

Proof. By definition we have

(3.20) ψ(t) =

∫
M

(|∇w|2 + aw2 logw + bSw2)dµ.

Using Lemma 2.1, we have

d

dt
ψ(t)|t=t0 =

∫
M

(2Sijwiwj + 2⟨∇wt,∇w⟩+ 2awwt logw + awwt + 2bSwwt + b
∂S

∂t
w2)dµ

−
∫
M

(|∇w|2 + aw2 logw + bSw2)Sdµ.(3.21)

Using integration by parts

(3.22)
∫
M

⟨∇wt,∇w⟩dµ = −
∫
M

wt∆wdµ.

Also, we have

(3.23) −
∫
M

|∇w|2Sdµ = −1

2

∫
M

S∆w2dµ+

∫
M

Sw∆wdµ.

Applying (3.22) and (3.23) in (3.21), we get

d

dt
ψ(t)|t=t0 =

∫
M

(2Sijwiwj + awwt + b
∂S

∂t
w2 − 1

2
S∆w2)dµ+ ψ(t0)

∫
M

(2wwt − Sw2)dµ.

(3.24)

From the normalization condition
∫
M
w2dµ = 1, we conclude that

(3.25) 2

∫
M

wwtdµ =

∫
M

Sw2dµ.

Using (3.25) in (3.24) we get

d

dt
ψ(t)|t=t0 =

∫
M

(2Sijwiwj + 2b|Sij |2w2 +
a

2
Sw2 + b(T −∆S)w2 + (b− 1

2
)S∆w2)dµ.

Again we have by definition ψ(t0)w(t0) = (−∆w + aw logw + bSw)(t0). Thus

(bS∆w2)(t0) = (ψ∆w2 + 2(∆w)2 + 2
∆w|∇w|2

w
− a logw ∆w2)(t0).(3.26)
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Thus from (3.26), using integration by parts, we get∫
M

bS∆w2dµ = −2

∫
M

⟨∇w,∇(∆w)⟩dµ− 2

∫
M

〈
∇w,∇

(
|∇w|2

w

)〉
dµ

−
∫
M

a logw ∆w2dµ.(3.27)

From Bochner’s formula we have −2⟨∇w,∇∆w⟩ = 2|wij |2+2Rijwiwj −∆(|∇w|2). Using
∇∇ logw = ∇∇w

w −∇ logw ⊗∇ logw, we get

(3.28)
〈
∇w,∇

(
|∇w|2

w

)〉
= |∇∇w|2 − w2|∇∇ logw|2.

Finding the value of the first integral of RHS of (3.27) using Bochner’s formula and putting
(3.28) in (3.27) we get

(3.29)
∫
M

bS∆w2dµ = 2

∫
M

w2|∇∇ logw|2dµ+ 2

∫
M

Rijwiwjdµ−
∫
M

aw2∆ logw dµ.

Using the integration by parts∫
M

Sijwiwjdµ = −
∫
M

w⟨div(S),∇w⟩dµ−
∫
M

w2⟨S,∇∇ logw⟩dµ

−
∫
M

Sijwiwjdµ.(3.30)

Finally using (3.29) and (3.30), we obtain

d

dt
ψ(t)|t=t0 =

∫
M

{
− 2w⟨div(S),∇w⟩ − 2w2⟨S,∇∇ logw⟩ − 2Sijwiwj + 2b|Sij |2w2 +

a

2
Sw2

+ b(T −∆S)w2 + 2w2|∇∇ logw|2 + 2Rijwiwj − aw2∆ logw − 1

2
S∆w2

}
dµ

=

∫
M

1

2

{
|Sij |2 + 4|∇∇ logw|2 + na2

4
− 4⟨S,∇∇ logw⟩ − 2a∆ logw + aS

}
w2dµ

+ (2b− 1

2
)

∫
M

|Sij |2w2dµ− na2

8
+ (b− 1

4
)

∫
M

(T −∆S)w2dµ

+

∫
M

1

2

{
4Ric(∇ logw,∇ logw)− 4S(∇ logw,∇ logw)− 4⟨div(S),∇ logw⟩

+ 2⟨∇S,∇ logw⟩+ 1

2
(T −∆S)

}
w2dµ.

Now by putting f = −2 logw, in the above equality we obtain the desired result. □

Remark 3.1. Taking b = 1
4 in (3.19) we have the following

(3.31)
d

dt
ψ(t)|t=t0 =

1

2

∫
M

|Sij +∇i∇jf +
a

2
gij |2e−fdµ+

∫
M

1

2
D(−∇f)e−fdµ− na2

8
.

Remark 3.2. When we take the geometric flow as the Hamilton’s Ricci flow, from (2.11)
we have D(X) = 0 and T −∆S = 0. Thus from (3.19) we get

d

dt
ψ(t)|t=t0 =

1

2

∫
M

|Rij − 2∇i∇j logw +
a

2
gij |2w2dµ+ (2b− 1

2
)

∫
M

|Rij |2w2dµ− na2

8
.

If we take the transformation w2 = e−f , then the above equation reduces to

d

dt
ψ(t)|t=t0 =

1

2

∫
M

|Rij + fij +
a

2
gij |2e−fdµ+ (2b− 1

2
)

∫
M

|Rij |2e−fdµ− na2

8
,
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which is exactly the Theorem 1.1 in [11].

Theorem 3.2. We assume that the geometric flow (1.1) has a solution on the interval [0, T ), where
T (> 0) is the maximum time of existence. Let g(t), t ∈ [0, T ), be a solution of (1.1) on a closed
Riemannian manifold Mn and λba(g) be the lowest geometric constant such that the equation (1.2)
with the normalization condition (1.3) has a positive solution. If D ≥ 0, b ≥ 1

4 and T −∆S ≥ 0

along the flow (1.1) then d
dt

(
λba(t) +

na2

8 t
)

≥ 0, and therefore the quantity λba(t) +
na2

8 t is
nondecreasing along the flow (1.1).

Proof. From Theorem 3.1, we have by using the assumptions D ≥ 0, b ≥ 1
4 and T −∆S ≥

0,

d

dt

(
ψ(t) +

na2

8
t

)
|t=t0 ≥ 0.

By definition it is clear that ψ(t) is a smooth function in t. Therefore in any small interval
(t0 − ϵ, t0 + ϵ) for sufficiently ϵ > 0,

d

dt

(
ψ(t) +

na2

8
t

)
≥ 0.

Thus

ψ(t0) +
na2

8
t0 ≥ ψ(t1) +

na2

8
t1,

for t1 < t0 and t1 ∈ (t0 − ϵ, t0 + ϵ). Again by definition ψ(t0) = λba(t0) and ψ(t1) ≥
λba(t1). Since t0 ∈ [0, T ) is arbitrary, so we can conclude that the quantity λba + na2

8 t is
nondecreasing along the flow. □

Definition 3.1. A solution (Mn, g(t)) of the flow (1.1) is called a breather whenever there
are a positive constant c, a diffeomorphism η : Mn → Mn, and times t1 < t2 such that
g(t2) = cη∗g(t1). The breather is called shrinking, steady, or expanding if c < 1, c = 1 or
c > 1, respectively.

Theorem 3.3. We assume that the geometric flow (1.1) has a solution on the interval [0, T ), where
T (> 0) is the maximum time of existence. Let (Mn, g(t)) be a steady breather to the flow (1.1)
and λba(t) be the lowest geometric constant such that the equation (1.2) with the normalization
condition (1.3) has a positive solution. Suppose that D ≥ 0 and T −∆S ≥ 0 along the flow (1.1).
Then d

dt

(
λba(t) +

na2

8 t
)
≥ 0.

Proof. From the Corollary 4.3 of [9], we have T −∆S = 0 and S = 0. Hence the inequality
d
dt

(
λba(t) +

na2

8 t
)
≥ 0 holds. □

Theorem 3.4. We assume that the geometric flow (1.1) has a solution on the interval [0, T ), where
T (> 0) is the maximum time of existence. Let (Mn, g(t)), t ∈ [0, T ) be a closed Riemannian
manifold evolves along the abstract geometric flow (1.1). Then the functional Fc

d(g, ϕ), defined in
(1.4) under the system (1.5), satisfies the following equation

d

dt
Fc

d(g, ϕ) =

∫
M

2D(−∇ϕ)e−ϕdµ+ (c− 1)

∫
M

(T −∆S)e−ϕdµ+ a

∫
M

|∇ϕ|2e−ϕdµ

−d
∫
M

(−aϕ2 − |∇ϕ|2 − S)e−ϕdµ+ 2

∫
M

|Sij + ϕij −
a

4
ϕgij |2e−ϕdµ

+(2c− 2)

∫
M

|Sij −
a

4
ϕgij |2e−ϕdµ− na2c

8

∫
M

ϕ2e−ϕdµ.(3.32)



724 A. Saha, S. Azami, L.-I. Pişcoran and S. K. Hui

Proof. Using the system (1.5) we have

d

dt

∫
M

(ϕ+ 1)e−ϕdµ =

∫
M

−ϕ∆e−ϕdµ+

∫
M

(−aϕ2 − S)e−ϕdµ(3.33)

=

∫
M

(−aϕ2 −∆ϕ− S)e−ϕdµ,

d

dt

∫
M

Se−ϕdµ =

∫
M

(2|Sij |2 + T − aϕS)e−ϕdµ+

∫
M

S(−∆e−ϕ)dµ(3.34)

=

∫
M

(2|Sij |2 + T −∆S − aϕS)e−ϕdµ,

and
d

dt

∫
M

|∇ϕ|2e−ϕdµ =

∫
M

[2Sijϕiϕj − 2ϕi(∆ϕ)i + 4ϕijϕiϕj + 2a|∇ϕ|2 − 2⟨∇ϕ,∇S⟩]e−ϕdµ

−
∫
M

|∇ϕ|2(∆e−ϕ)dµ−
∫
M

aϕ|∇ϕ|2e−ϕdµ.

Now using
∫
M

|∇ϕ|2(∆e−ϕ)dµ = 2
∫
M
ϕijϕiϕje

−ϕdµ, we have

d

dt

∫
M

|∇ϕ|2e−ϕdµ =

∫
M

[2Sijϕiϕj − 2ϕi(∆ϕ)i + 2ϕijϕiϕj + 2a|∇ϕ|2

−2⟨∇ϕ,∇S⟩]e−ϕdµ−
∫
M

aϕ|∇ϕ|2e−ϕdµ.

From Weitzenböck formula we have

(3.35)
1

2
∆ϕ|∇u|2 = |uij |2 + ui(∆ϕu)i + (Rij + ϕij)uiuj , ∀u,

where ∆ϕu = ∆u− ⟨∇ϕ,∇u⟩. Integrating the above formula we get

(3.36)
∫
M

(−ϕi(∆ϕ)i + ϕijϕiϕj)e
−ϕdµ =

∫
M

(|ϕij |2 +Rijϕiϕj)e
−ϕdµ.

So,

d

dt

∫
M

|∇ϕ|2e−ϕdµ =

∫
M

[2Sijϕiϕj + 2|ϕij |2 + 2Rijϕiϕj + 2a|∇ϕ|2(3.37)

−2⟨∇ϕ,∇S⟩]e−ϕdµ−
∫
M

aϕ|∇ϕ|2e−ϕdµ.

Now differentiating (1.4) with respect to t and using (3.33), (3.34) and (3.37), we get

d

dt
Fc

d(g, ϕ) =

∫
M

[2Sijϕiϕj + 2|ϕij |2 + 2Rijϕiϕj + 2a|∇ϕ|2 − 2⟨∇ϕ,∇S⟩]e−ϕdµ

−
∫
M

aϕ|∇ϕ|2e−ϕdµ+ c

∫
M

(2|Sij |2 + T −∆S − aϕS)e−ϕdµ

−d
∫
M

(−aϕ2 −∆ϕ− S)e−ϕdµ.(3.38)

Using the integration by parts

(3.39)
∫
M

Sijϕiϕje
−ϕdµ =

∫
M

⟨div(S),∇ϕ⟩e−ϕdµ+

∫
M

Sijϕije
−ϕdµ
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and using the above equation in (3.38) we have
d

dt
Fc

d(g, ϕ) =

∫
M

[2(Ric− S)(∇ϕ,∇ϕ)− 2⟨∇S − 2div(S),∇ϕ⟩+ (T −∆S)]e−ϕdµ

+(c− 1)

∫
M

(T −∆S)e−ϕdµ− d

∫
M

(−aϕ2 −∆ϕ− S)e−ϕdµ

+2

∫
M

[|Sij |2 + |ϕij |2 + 2Sijϕij −
a

2
ϕS − a

2
ϕ∆ϕ+

na2

16
ϕ2]e−ϕdµ

−a
∫
M

ϕ|∇ϕ|2e−ϕdµ+ 2a

∫
M

|∇ϕ|2e−ϕdµ+ a

∫
M

ϕ∆ϕe−ϕdµ

+(2c− 2)

∫
M

[|Sij |2 −
a

2
ϕS +

na2

16
ϕ2]e−ϕdµ− na2c

8

∫
M

ϕ2e−ϕdµ.

Thus the proof is complete. □

Remark 3.3. The above Theorem 3.4 generalizes the Theorem 1.4 of [11].

If in formula (3.32) we consider d = nac
8 , then we get the following result:

Corollary 3.1. We assume that the geometric flow (1.1) has a solution on the interval [0, T ),
where T (> 0) is the maximum time of existence. Let (Mn, g(t)) be a closed Riemannian manifold
evolves along the flow (1.1). If D ≥ 0, S ≥ 0, and T − ∆S ≥ 0 along the flow (1.1) then, for
c ≥ 1, we have d

dtF
c
nac
8
(g, ϕ) ≥ 0 along the flow (1.1).

4. CONCLUSION

The study of entropy formulas, eigenvalues and their monotonicities in the regime of
geometric flows have become more interesting topic since the invention of the Ricci flow
[10] and the work of Perelman [17]. Their geometric and topological implications are
numerous. A striking instance is the noncolapsing theorem and the removal of the ob-
structions in the way of Hamilton Ricci flow for proving Poincaré conjecture completely
by Perelman. Here in this paper, we consider a geometric constant such that nonlinear
equation (1.2), with the normalization condition (1.3), has a positive solution. We derive
variation formula for this geometric constant along abstract geometric flow (1.1) and con-
sequently obtain monotonic quantities involving the geometric constant. We also obtain
variational formula of the functional defined in (1.4) under the system (1.5). Our results
generalizes some results of [11]. As a further study, one can replace the usual Laplace
operator in (1.2) by weighted Laplace operator and study the variational formula of the
geometric constant on a metric measure space along abstract geometric flow.

Acknowledgement. The first author (A. Saha) gratefully acknowledges to the CSIR (File
No.: 09/025(0273)/2019-EMR-I), Government of India for the award of Senior Research
Fellowship. The authors are very much thankful to the anonymous reviewers towards to
the improvement of the paper.

REFERENCES

[1] Abolarinwa, A. Gradient estimates for a weighted nonlinear elliptic equation and Liouville type theorems.
J. Geom. Phy. 155 (2020), 103737.

[2] Abolarinwa, A.; Ehigie, J. O.; Alkhaldi, A. H. Harnack inequalities for a class of heat flows with nonlinear
reaction terms. J. Geom. Phy. 170 (2021), 104382.

[3] Abolarinwa, A.; Mao, J. The first eigenvalue of the p-Laplacian on time dependent Riemannian metrics.
arXiv:1605.01882v1.

[4] Cao, X. First eigenvalues of geometric operators under the Ricci flow. Proc. Amer. Math. Soc. 136 (2008), no.
11, 4075–4078.



726 A. Saha, S. Azami, L.-I. Pişcoran and S. K. Hui
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