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ABSTRACT. The study consists of an unreliable multiserver retrial queue with feedback where clients may
resist to join the orbit and the service provider is erratic. In this model we have considered c service providers at
a time and if all the c servers are busy, the incoming clients wait in the retrial orbit. The model is unfolded using
Matrix Geometric Method (MGM) to obtain the rate matrix and stationary probabilities. The system with retrials
is modelled and the performance measures and reliability indices are procured. These derived quotients are then
visualised and validated with the help of tables and graphs. Further, the cost analysis of the model is carried out
and the optimal cost for the system is obtained using Particle Swarm Optimization (PSO) algorithm for matrix
method. The optimal repair and retrial rates are obtained using PSO technique which helps the computer and
manufacturing industry to work towards better decision policies.

1. INTRODUCTION

Retrial queueing systems are the systems in which arriving jobs who find the server
busy wait and retry to enter the system. Queueing model with retrials find their ap-
plication in most modern computer networking systems including Wide Area Network
(WAN), Local Area Network (LAN) protocols and network packet-switching. In day-to-
day life, it is frequently noticed that people resist to join long queues. This state of affair
can be viewed as balking behavior where impatience of clients can be observed. All of
us are familiar with the fact that until the failed service provider is restored, the perfor-
mances of the system such as the waiting time of the clients, the system size, queue length
of the system, etc., may be heavily affected and cannot be reduced to some extent. In re-
cent past, exploration of retrial queues facing breakdowns of the server has been a field of
building interest. Taleb [21] studied preventive maintenance in a new version of an unre-
liable M/G/1 retrial queue with persistent and impatient customers. Lan [13] studied a
discrete-time Geo/G/1 retrial queueing system with probabilistic preemptive priority and
balking customers, in which the server is subject to starting failures and replacements in
the repair times may occur with some probability. Lakaour [12] has discussed M/M/1
retrial queue with collisions, transmission errors and unreliable server. Detailed applica-
tions of retrial queueing models with breakdown can be seen in [16, 20, 24, 25].

The multi-server retrial line raises fascinating numerical and computational inquiries
aside from its functional interest due to its more precise portrayal of several phenomena
of congestion. Most of the several server retrial queues are designed by a level-dependent
quasi-birth-and death (QBD) process. The primary component of this infinitesimal gen-
erator is the spatial heterogeneity that occurs due to repeated changes. This absence of
homogeneity causes the insightful intricacy of retrial models. Haddad and Belarbi [5]
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analysed an unreliable M/M/c retrial queue with c ≥ 3 in which all servers are subject to
breakdowns and repairs using phase merging algorithm. Kadi et al. [8] studied a multi-
server M/M/c queueing system with Bernoulli feedback and impatient customers (balk-
ing and reneging) under synchronous multiple and single vacation policies. Relevant
literature on several-server retrial queueing system can be found in [2, 3, 7, 9, 15, 18, 23].
These authors have used the well known Matrix Geometric Method (MGM) for solving
the queueing model. A practical application of multiserver queueing system can be seen
in [11] where the authors have optimized the service level of queueing system of reception
and the outpatient department during COVID-19 pandemic using the data of an outpa-
tient department (OPD) of a public hospital in Hyderabad.

Scarcity of work done in multiserver queueing models including erratic service provider
has motivated us to model an erratic M/M/c queue with retrials, balking and bernoulli
feedback where service provider is subjected to normal breakdowns. The model sees
its application in telephone switching system, computer and communication networks,
machinery and manufacturing sectors and in various sectors like cyber cafes, car wash
services, ATMs, ticket vending machines at metro stations and other automated multina-
tional companies. The highlights of the novelty of the work presented in the paper are

• To develop a queueing model considering erratic M/M/c retrial queue with char-
acteristic features defined above.

• To fabricate a Markov chain using Matrix Geometric Method.
• To find steady state solution to determine the steady state probabilities and queue

length of the system.
• To determine the reliability indices and busy period.
• To perform a sensitivity analysis through numerical values and an example.
• To obtain the optimal cost of the system using PSO.

The remaining paper is composed as follows: Section 2 depicts the narration of our
proposed queueing model. The detailed matrix model is discussed in section 3 where
the state diagram is also provided for c = 3 to give better insight of the model. The
steady state study and discussion of matrix geometric property in depth have been done
in Section 4. Some special cases are also given here, which depicts that the results of our
model can be reduced to the results of earlier studied models under special conditions.
Section 5 presents the derivation and analysis of the performance measures along with
reliability indices and busy period. Section 6 includes the numerical example with some
mathematical outcomes where the effect of important performance measures on system
size can also be seen. Further, the expected cost function is fabricated to accomplish the
optimal ideal estimations of certain parameters using PSO in section 7 and lastly, section
8 incorporates concluding remark along with future scope of the paper.

2. DEPICTION OF THE MODEL

Considering an erratic M/M/c retrial line with balking and bernoulli feedback. The
basic assumptions for the model are:

• Arrivals and balking: The arrival rate of a client is λ following Poisson process.
If the event is that the server is occupied or is uncertain, then, at that point the
arriving client may get annoyed and resist joining the queue and leaves the system
permanently with probability ν or may join the queue with probability ν̄ = 1− ν.

• Service and retrial policy: The entering client, on seeing the server unoccupied gets
the service straight away. Else on seeing the server occupied or inoperative, the
clients will have to retry later from a virtual orbit following first come first serve
(FCFS) principle. Once the client is completely served, he may be unsatisfied and
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join the retrial orbit to get served again with probability γ or may leave the system
with probability γ̄ = 1 − γ, where every client in the orbit is considered to be as
new client. The client on the top of the virtual track (orbit) retries to get served if
the service provider is unoccupied with exponential rate α.

• Breakdowns and repairs: The service providers in the developed system are subject
to breakdowns. They may face normal breakdowns with exponential rate θ while
the repair process for the broken servers follow exponential rate r. Once the server
is repaired, the service of the client is done.

Considering an upper limit N as the total sum of clients in the virtual orbit that are
allowed to take retrials. This directly gives us the probability of repeating attempts during
(t, t+ dt), such that there are j clients in virtual track at sometime t is αjdt+ o(dt), where
αj = min{j, N}α. Also presuming that the task of clients arrival, service times and inter-
retrial times are mutually independent.

3. MATRIX MODEL DESCRIPTION

Referring to the above described M/M/c retrial model with normal breakdown, the
random process Ξ is expressed as

Ξ = {(X(t), Y (t), Z(t)) : X(t) = 0, 1, 2, ..., c;Y (t) = 0, 1, 2, ...;Z(t) = 0, 1, 2, ..., c}.

Here X(t) is the possible busy service providers, Y (t) is the client’s total number that are
in retrials and Z(t) is possible number of servers under breakdown. Figure 1 presents the
state diagram for the model corresponding to c = 3.

FIGURE 1. State Transition Diagram

The probable state space is given by

ξ = {(i, j, k) : i = 0, 1, 2, ..., c; j = 0, 1, 2, ...; k = 0, 1, 2, ..., c− i}.

Under the steady state, the state probabilities are defined as follows:
• pi,j,k : the uncertainty (probability) of i servers being busy, k servers being in

breakdown and j clients being in virtual track, where j ≥ 0, 0 ≤ i+ k ≤ c.
• pc,j,0 : the probability that all c servers are occupied, no disrupted server and j

clients are in virtual track.
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• pn,j,k : the probability that n ≤ c servers are occupied, k disrupted servers and j
clients are in the orbit.

• p0,j,c : the probability that all c servers are disrupted and are under repair, no busy
server and j clients are in the orbit.

• pi,j,n : the probability that there are i occupied servers, j clients are in virtual track
and n ≤ c disrupted servers.

• pi,0,k : the probability that there are i occupied servers, no client is in the virtual
track and k disrupted servers.

• pi,n,k : the probability that there are i occupied servers, n clients are in the virtual
track and k disrupted servers.

The infinitesimal generator A of the Markov chain, using the lexicographical sequence
of different states is given in the form

A =



S0 U 0 0 0 0 . . . 0 . . .
T1 S1 U 0 0 0 . . . 0 . . .
0 T2 S2 U 0 0 . . . 0 . . .
...

...
...

. . .
... . . . 0 . . .

0 0 0 TN−1 SN−1 U 0 . . .
0 0 0 0 T S U . . .
0 0 0 0 0 T S . . .
...

...
...

...
...

...
...

. . .


.

The matrices Sj(j ≥ 0), Tj(j ≥ 1) and U are of order (c+ 1)(c+ 2)/2.

Sj is partitioned into block sub-diagonal matrix as

Sj=



C0
j 0 0 . . . 0 0 0

B1 C1
j 0 . . . 0 0 0

0 B2 C2
j . . . 0 0 0

...
...

...
. . .

...
...

...
0 0 0 . . . Bc−1 Cc−1

j 0

0 0 0 . . . 0 Bc Cc
j


where Bk is (c + 1 − k, c + 2 − k) ordered matrix s.t. Bk[i, i] = kβ ; 0 ≤ i ≤ c − k, k =

1, 2, ..., c and Ck
j is a (c+ 1− k) ∗ (c+ 1− k) matrix with entries

Ck
j =



Ck
j [i, i+ 1] = λ, 0 ≤ i ≤ c− k, j ≥ 0, 0 ≤ k ≤ c

Ck
j [i+ 1, i] = iγ̄µ, 0 ≤ i ≤ c− k, j ≥ 0, 0 ≤ k ≤ c

Ck
j [k, k − 1] = kr, 0 ≤ i ≤ c− k, j ≥ 0, 1 ≤ k ≤ c

Ck
j [0, 0] = −(λ+ kr + jα), j ≥ 0, 0 ≤ k ≤ c

Ck
j [i, i] = −{λ+ i(µ+ θ) + kr + jα}, 1 ≤ i ≤ c− k − 1, j ≥ 0, 0 ≤ k ≤ c

Ck
j [c+ 1− k, c+ 1− k] =

−{λν + (c+ 1− k)(µ+ θ) + kr + jαν̄)}, j ≥ 0, 0 ≤ k ≤ c

Tj is partitioned into block diagonal matrix as

T j =



D0
j 0 0 . . . 0 0
0 D1

j 0 . . . 0 0
0 0 D2

j . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Dc−1

j 0

0 0 0 . . . 0 Dc
j
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where Dk
j is a (c+1− k) ∗ (c+1− k) matrix s.t j → j − 1 and k → k− 1 with elements

to be

Dk
j =

{
Dk

j [i, i+ 1] = jα, 0 ≤ i ≤ c− k − 1, j ≥ 1, 0 ≤ k ≤ c
Dk

j [c+ 1− k, c+ 1− k] = jαν̄, j ≥ 1, 0 ≤ k ≤ c

U is partitioned into block super-diagonal matrix as

U=



E0
j F 0

j 0 0 . . . 0 0
0 E1

j F 1
j 0 . . . 0 0

0 0 E2
j F 2

j . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . Ec−1
j F c−1

j

0 0 0 0 . . . 0 Ec
j


where Ek

j is a (c+ 1− k) ∗ (c+ 1− k) matrix s.t. j → j + 1 and k → k + 1 with entries
of elements defined as

Ek
j =

{
Ek

j [i, i− 1] = iγµ, 1 ≤ i ≤ c− k, j ≥ 0, 0 ≤ k ≤ c− 1
Ek

j [c+ 1− k, c+ 1− k] = λν, j ≥ 0, i+ k = c

and F k
j is a matrix of order (c+ 1− k) ∗ (c− k) with F k

j [i+ 1, i] = iθ, 1 ≤ i ≤ c− k.

4. MATRIX-GEOMETRIC PROPERTY AND STEADY STATE SOLUTION

In order to solve the infinitesimal matrix A, we have different methods like Matrix
analytic method and Matrix Geometric Method (MGM). Clearly matrix A is a repetitive
matrix and MGM is a method to analyse the continuous quasi birth-death process whose
transition matrix has a repetitive structure. In order to truncate the infinite matrix, a rate
matrix R is deduced using cyclic reduction and then solving the generated finite matrix
which is a replica of the infinite matrix A. This method helps in simplification of the matrix
model, thus motivating us to obtain the results of the developed model using MGM to get
the steady state solution.

4.1. Steady State Solution. In this sub-section, the steady state probabilities are to be
obtained. Let π = [π0, π1, π2, ....] be its steady state probability vector which satisfies

πA = 0 and πe = 1

where each πj = [p0,j,0, p1,j,0,...,pc,j,0, p0,j,1, p1,j,1,..., pc−1,j,1,..., p0,j,c−1, p1,j,c−1, p0,j,c], j ≥ 0
and e is a column vector with all entries as 1. As defined earlier, clearly the Markov chain
A has a repetitive structure. The stationary probability vector π = {π0, π1, π2, ...} of A
exists under the equilibrium condition. So the equations of steady-state in the matrix
form are presented to evaluate vector π as follows:

π0S0 + π1T1 = 0,

πi−1U + πiSi + πi+1Ti+1 = 0, 1 ≤ i ≤ N,

πN−1U + πNSN + πN+1TN = 0,

πNRi−1−NU + πNRi−NSN + πNRi+1−NTN = 0, i ≥ N + 1.

(4.1)

(4.2)
∞∑
i=0

πie = 1.
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Evaluating the value of π0, π1, ..., πN using equation (4.1), we get

π0 = π1T1(−S0)
−1 = π1ξ1,

πi−1 = πiTi[−(ξi−1U + Si−1)]
−1 = πiξi, 2 ≤ i ≤ N,

(4.3)

Also

(4.4) πNξNU + πNSN + πNRTN = 0.

Clearly, from equation (4.3), πi (0 ≤ i ≤ N − 1) can be re-written in the from of πN

and the rest of the vectors {πN , πN+1, πN+2, ...} can be obtained using πi = πNRi−N , i ≥
N . Finally getting the steady state solution to be {π0, π1, π2, ..., πN−1, πN , πN+1, πN+2, ...}.
The normalizing condition to be used to get πN is as follows:

∞∑
i=0

πie = {π0 + π1 + π2 + ...+ πN−1 + πN + πN+1 + πN+2 + ...}e

= {πN

1∏
i=N

ξi + πN

2∏
i=N

ξi + ...+ πN

N∏
i=N

ξi + πN + πNR+ πNR2 + ...}e

= πN

[
N∑

k=1

k∏
i=N

ξi + (I −R)−1

]
e = 1.

(4.5)

Following Cramer’s rule in solving equation (4.4) and (4.5), one can get the steady-state
probability vector πN easily.

4.2. Matrix-Geometric Property. This sub-section deals with the basics of matrix analysis
method and study about the rate matrix. The rate matrix R is the minimal non negative
solution of the equation

(4.6) T + SR+ UR2 = 0.

Referring to Neuts [17] and Latouche and Ramaswami [14], R is specified by limn→∞ Rn.
The sequence Rn is represented as

R0 = 0 & Rn+1 = −[US−1 + TS−1R2
n]; n = 0, 1, 2, .....(4.7)

The rate matrix R can be determined from above equation by successive substitutions as
Rn converges monotonically. The probabilities πj can be evaluated using matrix geomet-
ric solution i.e. πj+N = πNRj , for j ≥ 1.

Using Theorem 3.1.1. from Neuts [17], the balance situation of the model exists iff

(4.8) XUe < XTe

where X is invariant probability of matrix G = T + S + U s.t. X satisfies XG = 0 and
Xe = 1. On substituting T and U in equation (4.8) we get,

(4.9) αN(1− PG) > λPG

where PG is the probability of all service providers being occupied (i.e. i + k = c). This
implies that the designed model is stable iff expected rate of retrials is larger than the
expected rate of entries in virtual track. For more detailed explanation of this method and
solution one can refer the work of Jain and Jain [6].
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4.3. Special Cases. Here we present some particular cases. It can be seen that under
certain conditions, our developed model reduces to those of previously studied models
by various authors.

(i) When θ = 0 and r = 0 (no breakdown and no repair), our modelled system reduces
to the model developed by Lin and Ke [15].

(ii) When ν = 1 and γ = 0 (no balking and no feedback), the results of the model
studied by Subramanian et al. [23] can be obtained.

(iii) When c = 2, ν = 1 and γ = 0 (two server, no balking and no feedback) our model
reduces to a M/M/2 queue with retrial and normal failure which coexist with the study
done by Raiah and Oukid [19].

(iv) When c = 1, ν = 1 and γ = 0 (single server, no balking and no feedback), the
model reduces to M/M/1 unreliable queue with retrial which coexist with the study done
by Lakaour et al. [12].

5. SYSTEM PERFORMANCE MEASURES

The qualitative behavior of the queuing model is thoroughly studied using the per-
formance measures of the system. With the help of probability steady state vectors, the
following long run probabilities and average queue length can be obtained for different
values of system parameters λ, µ, α, ν, γ, θ and r. The next subsections provide the long
run probabilities of different states, reliability indices and system busy period as follows:

5.1. Probabilities and queue length. The long run probability of different system states
along with queue length, mean number of occupied and broken-down service provider
are given as:

• The long run probability of the number of server’s occupied

Prob (all c servers are occupied) =
∞∑
j=0

p(c, j, 0).

Prob (n occupied servers where n ≤ c) = P[O] =
∞∑
j=0

n−c∑
k=0

p(n, j, k).

• The long run probability of the number of server under breakdown

Prob (all c servers are under breakdown) =
∞∑
j=0

p(0, j, c).

Prob (n servers under breakdown where n ≤ c) = P[B] =
∞∑
j=0

n−c∑
i=0

p(i, j, n).

• The long run probability of the number of clients in virtual orbit

Prob (no client is in orbit) =
c∑

k=0

c−k∑
i=0

p(i, 0, k).

Prob (n clients are in orbit =
c∑

k=0

c−k∑
i=0

p(i, n, k).

• Average number of occupied server (ANOS)

ANOS =

c∑
n=0

n

{ ∞∑
j=0

n−c∑
k=0

p(n, j, k)

}
.
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• Average number of broken-down server (ANBS)

ANBS =

c∑
n=0

n

{ ∞∑
j=0

n−c∑
i=0

p(i, j, n)

}
.

• Average number of clients in the virtual orbit (E[L]) are

E[L] =
∞∑

n=0

n

{
c∑

k=0

c−k∑
i=0

p(i, n, k)

}
.

5.2. Reliability indices and busy period. System manufacturers and software develop-
ers need a certain level of reliability in a model for the smooth functioning of their systems.
The reliability measures of the system for the steady state will give the data which is ex-
pected for the system’s improvement in the queueing model. Taleb and Aissani [21] have
focused on the server’s first failure time and its reliability. Upadhyaya [22] has studied a
MX/G/1 retrial line model with negative arriving clients. In [22], a point wise and steady
state availability of the service provider in the queueing model is given. With the help of
these studies, we incorporate the following measures:

(a) Reliability Indices:
To validate and confirm the analytical results of our model, we give the availability

(As) and failure frequency (Fs) of the service provider are given by

As = 1− P[B] = 1−

{ ∞∑
j=0

n−c∑
i=0

p(i, j, n)

}
;

Fs = θP[B] = θ

{ ∞∑
j=0

n−c∑
i=0

p(i, j, n)

}
.

(5.10)

(b) Busy Period:
Let E[U] be the awaited length of the period that include beginning of the epoch when

the new arrival finds the system and server unoccupied, to the epoch when the system
and server are unoccupied again after service completion. Furthermore, by using the al-
ternating renewal process, as the arrival parameter (λ) follows the geometric distribution,
we get

(5.11) E[U ] =
1

λ

[
1

p0,0,0
− 1

]
.

6. NUMERICAL ILLUSTRATION

A queueing system that is applicable in day-to-day life is worth studying. A model’s
authenticity is validated using numerical evaluation where we verify the trends of some
basic parameters on queue length and system size evaluated for the system. Now, giving
the practical application of our model in real world in sub-section 6.1 and providing the
impact of some specific parameters on performance measures of the model in sub-section
6.2.

6.1. Working of Automated car wash/service systems. The practical application of the
developed model can be seen in operational models. We are referring to a empirical prob-
lem consisting of a car wash/service system with number of machines to be three (i.e.
c = 3). The incoming (arrival) rates when the garage/workshop is idle is considered to
be (λ) = 7. The incoming cars get their data entered in the computer system and once
the system allows, they may either get served immediately if the garage/workshop is
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idle with service rate (µ) = 14 or they may have two options. Firstly, they can join the
queue of cars and the owner will have to retry again (retrials) with retrial rate (α) = 6
to get served. Secondly, they might resist joining a queue and can leave the workshop
permanently (ν = 0.25).

As the garage/workshop is automated, the machines may face some sort of breakdown
(θ = 1) while the car is served. We assume that the machines are mended immediately
with repair rate (r) = 3.5 and once they are repaired, the service process resumes. Often
these automated service stations share online feedback forms and provide re-service to
unsatisfied clients (feedback). The probability for the server to get re-service is γ = 0.2.

We have framed a code to model this situation in MATLAB software and hence ob-
tained the following results: P [O] = 0.8196, P [B] = 0.1851, E[L] = 2.0390, As =
0.8149, Fs = 0.1851. The results and values obtained here tells us that our model is
much reliable and its failure rate is less. Thus the results are helpful in increasing the per-
formance of the operational unit and pauses the overloading of production system. The
system designers can rely on the values obtained above and can take advantage for their
respective systems.

6.2. Sensitivity Analysis. A queueing model is efficient and helpful enough if it provides
accurate results under stable condition. Thus the parametric values are selected in a way
that the system remains under equilibrium. Now considering the same default parametric
values as used in subsection 6.1. We plot curves for different number of servers in this
subsection. In all the graphs, it can be noticed that with the increasing number of servers,
the number of clients in the system decreases and this situation is closely related to the
reality. By doing this, we aim to present the effect on mean system size by changing
various critical system parameters λ, µ, α and θ.

FIGURE 2. Ls vs λ for
varying c.

FIGURE 3. Ls vs µ for vary-
ing c.

Figure 2 reflects the increasing pattern in system size as the entering rate increases,
while in figure 3 the system size slopes down with the increase in service rate. Clearly,
figure 4 shows the decrease in system size with the increment in the retrial rate but in Fig-
ure 5 an increment in the system size with increase in the breakdown rate can be seen. All
the graphs are in consistent to real life models and hence authenticate the results obtained
for the model under study. Thus the system designers and decision makers should make
efforts and choose these parameters in such a way that their respective systems become
economical.
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FIGURE 4. Ls vs α for
varying c.

FIGURE 5. Ls vs θ for vary-
ing c.

7. COST OPTIMIZATION

Practically, the total operating cost of a system assumes a vital part in the investiga-
tion of many industrial systems. System architects and supervisors are typically keen
on limiting the working expense per unit time to make the system more productive and
profitable. To exhibit the relevance of the outcomes acquired in the past conversation, we
foster an expected operating cost function per unit time for the queueing model which is
defined as

(7.12) TC = ChE[L] + CbP [O] + CrP [B] + Cdµ+ Csc

where the cost symbols corresponding to the cost function (per unit time) are:
Ch : Cost for holding each client,
Cb : Cost of service provider being occupied,
Cr : Cost of service provider being under repair,
Cd : Cost to provide a service,
Cs : Fixed cost to buy a service provider.
Consider the following minimization problem:

(CP ) TC(r∗, α∗) = minTC(r, α)(7.13)

where S : {(r, α) : r, α ∈ (0.5, 6)} ⊂ R2.
Solving a cost minimization problem of this kind using analytical methods is a tough

task, as cost function TC is highly complex and non-linear. So we are going to adopt a soft
computing technique to get the optimal cost.

7.1. Particle Swarm Optimization (PSO). Introduction of Particle swarm optimization
(PSO) was provided by Kennedy [10] after inspecting the migratory behavior of swarms
and birds. This method has got popular since the last decade in optimizing the cost of
many queueing models. This algorithm works on the principle that the best positioned
solution attract other possible values to get the optimal result in a particular search space.
For a review of PSO on queueing models one can refer to Agarwal et al. [1]. In this survey
paper they have discussed the application of PSO in optimization of unreliable retrial
server queueing systems.

Taking into account the MATLAB algorithm for PSO discussed by Malik et al. [16], we
have made required changes in the code and worked it for matrix geometric method for
our system. An optimal cost for c = 2, 3, 4 with different values of the pair (θ, γ) to get the
optimal point (r∗, α∗) is determined. For this purpose, four different cost sets (1-4) have
been considered for the evaluation of minimum cost as

CostSet1: Ch= $6; Cb= $15; Cr= $10; Cd= $8; Cs= $4;
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CostSet2: Ch= $6; Cb= $15; Cr= $10; Cd= $4; Cs= $8;
CostSet3: Ch= $6; Cb= $12; Cr= $10; Cd= $8; Cs= $4;
CostSet4: Ch= $6; Cb= $12; Cr= $10; Cd= $4; Cs= $8;
To obtain the optimal solution of the problem, the PSO technique has been executed.

We get the optimal rates to be (r∗, α∗) = [5.9226,6] where the minimum cost for the sys-
tem corresponding to Cost Set1 is TC∗ = $147.5509 while that for Cost Set2
is TC∗ = $99.5509. Figures 6 and 7 represent the solution obtained using PSO for Cost
Sets 1 and 2 respectively. Similarly, the convergence graphs for Cost Sets 3 and 4 can be ob-
tained using the same MATLAB algorithm. Considering different cost sets with varying
different cost factors to obtain the best cost for the system will help the system designers
and manufacturers to develop a reliable system which cost-efficient too.

FIGURE 6. Cost vs It-
eration using PSO for
Cost Set 1.

FIGURE 7. Cost vs It-
eration using PSO for
Cost Set 2.

The joint optimal values of parameters (r∗, α∗) obtained for all four cost sets by chang-
ing parameter values are summed up in Table 1 where it can be noted that the optimal
cost slightly increases with increase in number of servers and increase in parameter val-
ues. We observe from Table 1 that the minimum cost is obtained for cost set 4 as compared
with other cost sets for different parameters. Also, when we decrease the cost of occupied
service provider, the overall cost of the system decreases irrespective of the server’s fixed
buying cost or cost to provide service. Thus a real life scenario can be interpreted where
one is advised to make a one time investment by buying a good product (irrespective of
high fixed cost) rather than getting its re-service regularly (increase overall cost).

Most of the authors working with multi-server queues like [2, 3, 4, 5, 6, 19, 23] have not
studied the optimum cost for their systems. Very few authors have used Direct Search
Method and Quasi-Newton method to optimize the system cost which can be seen in
[7, 8, 9, 15]. These methods are time consuming and are prone to errors as they are based
on larger calculations. In this paper, we have not only done the sensitivity and reliability
analysis of the parameters but also the cost optimization of the system is done using a well
known meta-heuristic technique PSO. Finding the optimal cost of the system using PSO
makes it trustworthy as the technique, in larger space, is helpful to the mathematicians
and scientists in getting the best optimal results. Its convergence rate is relatively faster
and accurate compared to the other techniques.
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TABLE 1. Evaluation of the optimal cost (in $) and optimal values for
(r∗, α∗) by varying the number of servers using PSO.

Number
of
server

Parameters Cost Set1 Cost Set2 Cost Set3 Cost Set4

(θ, γ) (r∗, α∗), TC when λ = 7, µ = 14, ν = 0.25

(1,0.2) [5.9223 6],
147.5509

[5.9226 6],
99.5509

[6 6],
144.9125 [6 6], 96.9125

c = 2 (2,0.2) [3.8894 6],
148.0795

[3.8893 6],
100.0795

[6 6],
145.6270 [6 6], 97.6270

(1,0.25) [3.0583 6],
148.2037

[3.0583 6],
100.2037

[6 6],
145.6518 [6 6], 97.6518

(1,0.2) [0.8277 6],
149.6769

[0.8276 6],
105.6769

[1.3736 6],
147.7729

[1.3737 6],
103.7729

c = 3 (2,0.2) [1.3401 6],
149.9597

[1.3397 6],
105.9597

[1.9279 6],
148.1150

[1.9277 6],
104.1150

(1,0.25) [0.8754 6],
150.2386

[0.8760 6],
106.2386

[1.4312 6],
148.3629

[1.4313 6],
104.3629

(1,0.2) [6 2.9836],
151.0648

[6 2.9836],
111.0648

[6 3.8364],
149.1718

[6 3.8363],
109.1718

c = 4 (2,0.2) [6 3.7501],
151.1717

[6 3.7501],
111.1717

[6 4.9511],
149.2625

[6 4.9516],
109.2625

(1,0.25) [6 3.7262],
151.2821

[6 3.7258],
111.2821

[6 4.8012],
149.3997

[6 4.8009],
109.3997

8. CONCLUSION

Getting a cost efficient system helps system designers to improve profit and reduce
delays in satisfying client’s demand. The work done in the present investigation includes
balking behavior of the entering clients. Our server, being machines, can breakdown at
some point of time and are subject to repairs. The unsatisfied clients may opt for another
service in the form of bernoulli feedback. This enables us to relate our model to real life
situations where one desires a timely service. One can apply the results of the model to
workplaces where distinct machinery systems work simultaneously such as automated
vending machines, computing systems, mobile and cellular networks and many more.

Decision makers face challenges in controlling the sensitive parameters of a model.
The reliability and numerical analysis of some critical parameters in this study helps sys-
tem managers to develop a reliable system which reduces congestion problems. Efficient
search approach is presented to obtain the optimal number of repair and retrial rates. The
global optimal obtained using PSO makes our model reliable in real economical world.
The model is applicable to many distinct digital systems such as packet switching net-
works, computing systems and many more. In future, development on repair policies i.e.
considering delayed repair or active, passive breakdowns could be applied in this model.
One can also think of applying characteristic behavior of clients like reneging with multi
optional service on this model.
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