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Stability and bifurcation analysis of a four-dimensional
economic model

GHEORGHE MOZA1 , CARMEN ROCŞOREANU2, MIHAELA STERPU3 and REGILENE
OLIVEIRA4

ABSTRACT. In this work a four dimensional financial system, depending on five parameters is analyzed. The
system was obtained by adding a new feed-back control variable to a well-known 3D financial system, modelling
the evolution of the interest rate, the investment demand and the inflation rate. The stability of economical
relevant equilibria is established. All the Hopf singularities were analyzed and the existence of supercritical,
subcritical, and degenerated Hopf bifurcations was proved. Corresponding to them we found stable limit cycles,
saddle type limit cycles. In addition, for certain parameters strata, one of the equilibria becomes a center, an
approximate two-dimensional center manifold is determined and isolated periodic solutions are emphasized
numerically. A double-Hopf degenerated bifurcation is also found. The addition of the feed-back led to obtain
new possibilities to stabilize the economic environment, either to a new stable equilibrium state or to stable
periodic behavior.

1. INTRODUCTION

Starting with the three-dimensional financial system reported in [8]

(1.1)

 ẋ = z + x (y − a) ,
ẏ = 1− by − x2,
ż = −x− cz,

where x = x (t) is the real interest rate (calculated as the difference between the nominal
interest rate and the inflation rate), y = y (t) is the investment demand, z = z (t) is the
inflation rate, a ∈ R is the saving amount, b ≥ 0 is the cost per investment, c > 0 is the
elasticity of the demand on the commercial market, a new four-dimensional system was
introduced in [4]:

(1.2)


ẋ = z + x (y − a) ,
ẏ = 1− by − x2,
ż = −x− cz + u,
u̇ = −dxy − ku−mz,

where u denotes a control input and economically state intervention to balance the eco-
nomic environment. Apart from the study of stability of equilibria and of periodic solu-
tions emerging through Hopf bifurcations, the authors designed an electronic circuit of
the system, in order to realize simulation outputs and oscilloscope outputs.

System (1.1) have been widely investigated, with emphasis on stability, Hopf bifurca-
tion ([8], [9], [10]), periodic solutions, chaos, global dynamics [1], [3], [6], [7], [11], [12],
[21], [22]. Other 4D systems, obtained by adding a new equation to system (1.1) with
certain economic significance, were proposed and analysed in [13], [14].
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In the present paper, we use a feed-back control function u(t) = u(0)e
∫ t
0
(n−dy(t))dt,

depending only on the investment demand y(t) and actioning as an external forcing on
the second equation in system (1.1). Here n and d are real parameters, illustrating the
relation between the investment demand and the government regulations.

As u̇ = nu− dyn, the new model is given by

(1.3)


ẋ = z + x (y − a) ,
ẏ = 1− by − x2 − u,
ż = −x− cz,
u̇ = nu− dyu,

In this paper we investigate local stability of equilibria and analyze various bifurcations
corresponding to them. The system may have three, four, or an infinity of equilibria.
Three of these equilibria, denoted by P1 = (0, 1

b , 0, 0), P3,4 =
(
±
√
α, ac+1

c ,∓ 1
c

√
α, 0

)
, with

α = 1 − b(1+ac)
c > 0, correspond to the equilibria of the 3-dimensional system (1.1). We

establish the topological type of these equilibria and prove the existence of Hopf and
Bautin bifurcations at P1, for certain values of the parameters, leading to the existence of
stable or unstable limit cycles.

The other equilibrium, denoted by P2 = (0, n
d , 0, 1 −

b
dn), has no correspondent in the

equilibria of system (1.1) and it is the source of a rich dynamic behavior. Most of the results
in our research refer to this equilibrium point. First, we establish the topological type of P2

and investigate the existence of Hopf bifurcations. Depending on the parameters values,
these bifurcations may be subcritical, supercritical, or degenerate. By computing the first
two Lyapunov coefficients, we find parameter strata corresponding to Bautin bifurcations.
Also, we determine strata where the first three Lyapunov coefficients are zero, thus the
equilibrium point could be a nonlinear centre. We compute the corresponding center
manifold and use numerical simulations [2] to illustrate the theoretical results. Finally,
we prove the existence of a double-Hopf degenerate bifurcation, by using a technique in
[5].

The paper is organized as follows. In Section 2, the stability of equilibria is established,
and the corresponding Hopf and Bautin bifurcations are analyzed. In Section 3 the de-
generate Hopf singularity P2 is investigated, while in Section 4 a degenerate Hopf-Hopf
bifurcation at P2 is emphasized. Finally, some conclusions are given.

2. LOCAL ANALYSIS

If b ̸= 0, d ̸= 0 and α > 0 then system (1.3) has 4 equilibrium points: P1 = (0, 1
b , 0, 0),

P2 = (0, n
d , 0, 1 − b

dn), P3 = (
√
α, ac+1

c ,− 1
c

√
α, 0) and P4 = (−

√
α, ac+1

c , 1
c

√
α, 0),where

α = 1− b(1+ac)
c > 0.

In addition, if b ̸= 0 and ac+1
c = n

d , there also exist the equilibria

Qs =

(
s,

ac+ 1

c
,−s

c
, α− s2

)
, s ∈ R,

defining a curve Γ = {
(
s, ac+1

c ,− s
c , α− s2

)
, s ∈ R} ⊂ R4.

If b = 0, d ̸= 0, then system (1.3) has 3 equilibrium points: P2 = (0, n
d , 0, 1), P3 =

(1, ac+1
c ,− 1

c , 0) and P4 = (−1, ac+1
c , 1

c , 0). Also, if d = 0, only equilibria P1, P3, P4 exist.
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Consider the Jacobian matrix of system (1.3) at an equilibrium point P0 = (x0, y0, z0, u0) ,
namely:

(2.4) J (x0, y0, z0, u0) =


y0 − a x0 1 0
−2x0 −b 0 −1
−1 0 −c 0
0 −du0 0 n− dy0

 .

The translation τ(P0) defined as

(2.5) x1 = x− x0, x2 = y − y0, x3 = z − z0, x4 = u− u0,

brings the equilibrium P0 at the origin of the system

ẋ = J (x0, y0, z0, u0)x+
1

2
B (x, x) ,

where

(2.6) B (x, y) =


x1y2 + y1x2

−2x1y1
0

−d (x2y4 + y2x4)

 .

2.1. Stability and Hopf bifurcation at P1. The equilibrium P1 = (0, 1
b , 0, 0) exists as b > 0.

At P1, the characteristic equation of the Jacobian matrix J1 = J(P1) reads

(2.7) (λ+ b)

(
λ+

d

b
− n

)[
λ2 + λ

(
a+ c− 1

b

)
+ 1 + ac− c

b

]
= 0,

thus the eigenvalues satisfy

λ1 = −b, λ2 = n− d

b
,

λ3λ4 = 1 + ac− c

b
, λ3 + λ4 =

1

b
− a− c.

The following results are easily obtained:

Theorem 2.1. The equilibrium P1 is a hyperbolic attractor if and only if bn < d, a + c > 1
b ,

1 + ac − c
b > 0. For the other values of the parameters P1 is either a saddle or a nonhyperbolic

equilibrium.

Proof. As b > 0, we have λ1 < 0. Thus P1 is a hyperbolic attractor if and only if λ2 < 0,
Re(λ3,4) < 0, hence the conditions in the theorem. □

Theorem 2.2. The equilibrium P1 is non-hyperbolic in one of the following situations:
(1) if (i) d = bn, and 1+ac− c

b ̸= 0, b(a+c) ̸= 1; (P1 ≡ P2) ; or (ii) d = bn, b(a+c) = 1,
and 1 + ac − c

b < 0, (P1 ≡ P2) ; or (iii) 1 + ac − c
b = 0, b(a + c) ̸= 1, and d ̸= bn,

(P1 ≡ P3 = P4 ∈ Γ) ; then P1 is a fold singularity;
(2) if d ̸= bn, b(a + c) = 1, and 1 + ac − c

b > 0, then P1 is a Hopf singularity, with
λ3,4(0) = ±iω1, with ω1 =

√
1− c2;

(3) if d = bn, b(a+ c) = 1, and 1 + ac− c
b > 0, then P1 is a fold-Hopf singularity;

(4) if (i) d = bn, 1 + ac − c
b = 0, and b(a + c) ̸= 1 or (ii) 1 + ac − c

b = 0, b(a + c) = 1,
and d ̸= bn, then P1 is a double-zero singularity;

(5) if d = bn, 1 + ac− c
b = 0, and b(a+ c) = 1 then P1 is a triple-zero singularity.
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Theorem 2.3. A Hopf bifurcation takes place at the equilibrium P1, when parameters transver-
sally cross the stratum 1

b = a+ c, 1 + ac− c
b > 0 and d ̸= bn, provided

l1(0) =
1

2ω1

[
2c− b

b2 + 4ω2
1

− 2

b

]
̸= 0.

Proof. We may consider β = 1
b − a − c as the bifurcation parameter. For b(a + c) = 1,

1 + ac − c
b > 0, d ̸= bn, we have β = 0, and the Jacobian matrix J1 has a pair of purely

imaginary eigenvalues, λ3,4(0) = ±iω1, with ω1 =
√
1− c2. Close to β = 0, we have

Re(λ3,4(β)) = 1
2β, thus the transversality condition from the Hopf bifurcation Theorem

[5] is satisfied. The second condition to verify is l1(0) ̸= 0, that is the first Lyapunov
coefficient is nonzero at the bifurcation value β = 0.

In order to compute the Lyapunov coefficient, we use the projection method [5] and the
formulae deduced in [17], [18].

As β = 0, perform the translation τ(P1), bringing the equilibrium P1 at the origin of
the system

ẋ = Ax+
1

2
B (x, x) ,

with A = J1 and B given in (2.6).
Two complex eigenvectors satisfying the conditions Aq = iω1q, A

T p = −iω1p and
⟨p, q⟩ = 1 can be chosen as q =

(
1 0 iω1 − c 0

)T and p = i
2ω1

(
c− iω1 0 1 0

)T
.

The complex vectors involved in the computation of the first Lyapunov coefficient read
h11 =

(
0 − 2

b 0 0
)T and h20 =

(
0 − 2

b+2iω1
0 0

)T
. Thus, using the formula

(5.39) in [5], we obtain:

l1(0) =
1

2ω1

[
2c− b

b2 + 4ω2
1

− 2

b

]
.

Consequently, if 2c−b
b2+4ω2

1
− 2

b ̸= 0, the first Lyapunov coefficient at β = 0 is nonzero. □

Remark 2.1. If 2c−b
b2+4ω2

1
− 2

b < 0, the Hopf bifurcation at P1 is supercritical, that is a limit

cycle appears, locally attractive on the center manifold, while if 2c−b
b2+4ω2

1
− 2

b > 0, the Hopf
bifurcation is subcritical, that is the limit cycle is repelling on the center manifold. In
addition, as bn− d < 0, the center manifold is attractive.

In Figure 1, projections of the attractive limit cycle existing for the parameters a =
0.6, b = 1, c = 0.2, d = 3, n = −1 on the planes (x, z), (y, z), (x, y), and (x, u) are repre-
sented.

As l1(0) = 0, we get b = 1
3

(
c+

√
25c2 − 24

)
. The following result holds.

Theorem 2.4. As l1(0) = 0, the second Lyapunov coefficient reads

(2.8) l2(0) =
−324

(
−108 + 45c2 + 168c4 − 100c6 +

(
9c− 24c3 + 20c5

)√
25c2 − 24

)(
c+

√
25c2 − 24

)3 (
6− 5c2 + c

√
25c2 − 24

)3 .

A Bautin bifurcation could take place at the equilibrium P1, when parameters transversally cross
the stratum 1

b = a+ c, 1 + ac− c
b > 0 and d ̸= bn, provided

l2(0) ̸= 0.

Proof. Using the notations in [17], the complex vectors involved in the computation of the
second Lyapunov coefficient corresponding to the Hopf bifurcation at P1 read

h21 = 2(3b+4iω1)

b(b+2iω1)(1−c2+3ω2
1)

(
iω1 − c 0 c2 + ω2

1 0
)T

,

h30 = 6

(b+2iω1)(−1+c2+9ω2
1)

(
c+ 3iω1 0 −1 0

)T
,
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FIGURE 1. Projections of the limit cycle corresponding to P1 on different
planes, parameters: a = 0.6, b = 1, c = 0.2, d = 3, n = −1.

h31 = 3
(b+2iω1)

2

(
0

(
−4
b − 2

b+2iω1

)
(ω1−ic)

ω1
− 4(c−iω1)(3b+4iω1)

b(c2−1−3ω2
1)

− 4(c+3iω1)

(c2−1+9ω2
1)

0 0

)T

,

h22 =

(
0

4(12b3c−2bc(c2−1−19ω2
1)+b2(3c2−3−17ω2

1)+8ω2
1(c

2−1−3ω2
1))

b3(b2+4ω2
1)(1−c2+3ω2

1)
0 0

)T

.

Replacing these expressions into formula (29) in [18] for the second Lyapunov coeffi-
cient, we obtain the expression (2.8). □

2.2. Stability and Hopf bifurcation at P2. At P2 = (0, n
d , 0, 1 − bn

d ), the characteristic
equation associated with the Jacobian matrix J2 = J(P2) reads(

λ2 + bλ+ bn− d
) [

λ2 − λ
(n
d
− a− c

)
+ 1 + ac− nc

d

]
= 0.

Thus the eigenvalues of J2 satisfy

λ1λ2 = bn− d, λ1 + λ2 = −b,

λ3λ4 = 1 + ac− nc

d
, λ3 + λ4 =

n

d
− a− c.

Analysing the signs of these eigenvalues, the following results are easily obtained:

Theorem 2.5. The equilibrium P2 is a hyperbolic attractor if and only if b > 0, d < bn, (a+ c) >
n
d , 1+ac− nc

d > 0. For all the other values of the parameters, P2 is either a saddle or nonhyperbolic.

Theorem 2.6. As b > 0, the equilibrium P2 is non-hyperbolic in one of the following situations:
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(1) if (i) bn = d, n
d ̸= a + c and 1 + ac ̸= nc

d (P2 ≡ P1) ; or (ii)bn ̸= d, n
d ̸= a + c and

1+ ac = n
d c; (P2 ∈ Γ) or (iii) bn = d, n

d = a+ c and 1+ ac < n
d c (P2 ∈ Γ) then P2 is a

fold singularity;
(2) if bn ̸= d, n

d = a+ c and 1 + ac > n
d c then P2 is a Hopf singularity, with λ3,4 = ±iω1,

ω1 =
√
1− c2.

(3) if bn = d, n
d = a+ c and 1 + ac > n

d c, then P2 is a fold-Hopf singularity.
(4) if (i) bn = d, n

d ̸= a + c and 1 + ac = n
d c or (ii) bn ̸= d, n

d = a + c and 1 + ac = n
d c,

then P2 is a double-zero singularity.
(5) if bn = d, n

d = a+ c and 1 + ac = n
d c then P2 is a triple-zero singularity.

Theorem 2.7. As b = 0, the equilibrium P2 is non-hyperbolic in one of the following situations:
(1) if (i) d < 0 , n

d ̸= a+ c and 1+ ac ̸= n
d c or (ii) bn > d < 0 , n

d = a+ c and 1+ ac < n
d c,

the equilibrium P2 is a Hopf singularity with λ1,2 = ±iω2, ω2 =
√
−d, d < 0.

(2) if d > 0, n
d = a + c and 1 + ac > n

d c then P2 is a Hopf singularity, with λ3,4 = ±iω1,

ω1 =
√
1− c2.

(3) if d < 0, n
d = a + c and 1 + ac > n

d c, then P2 is a double Hopf singularity, with
λ1,2 = ±iω2 and λ3,4 = ±iω1.

(4) If d > 0, n
d ̸= a+ c and 1 + ac = n

d c then P2 is a fold singularity.
(5) If d > 0, n

d = a+ c and 1 + ac = n
d c then P2 is a double-zero singularity.

(6) If d < 0, n
d ̸= a+c and 1+ac = n

d c, then P2 is a fold-Hopf singularity with λ1,2 = ±iω2.
(7) If d < 0, n

d = a+ c and 1 + ac = n
d c, then P2 is a double–zero Hopf singularity.

In the next theorem the type of the Hopf bifurcation corresponding to P2 is deduced.

Theorem 2.8. A Hopf bifurcation takes place at the equilibrium P2, when parameters transver-
sally cross the stratum b > 0, d ̸= bn, n

d − a− c = 0, and 1 + ac− nc
d > 0, provided

c
(
4ω2

1 + d− bn
)
− 2bω2

1 ̸= 0,

with ω1 =
√
1− c2 .

In addition, if c
(
4ω2

1 + d− bn
)
− 2bω2

1 < 0, the Hopf bifurcation at P2 is supercritical, while if
c
(
4ω2

1 + d− bn
)
− 2bω2

1 > 0, the Hopf bifurcation is subcritical.

Proof. We may consider the bifurcation parameter β = n
d − a − c, and the bifurcation

value β = 0. For b > 0, d ̸= bn, n
d − a − c = 0, and 1 + ac − nc

d > 0, the Jacobian matrix
J2 has a pair of purely imaginary eigenvalues, λ3,4(0) = ±iω1. Close to β = 0, we have
Re(λ3,4(β)) = 1

2β, thus the transversality condition ∂Re(λ3,4(β))
∂β |β=0 ̸= 0, from the Hopf

bifurcation Theorem, is satisfied.
At β = 0, the transformation τ(P2), brings the equilibrium P2 at the origin of the system

ẋ = Ax+
1

2
B (x, x) ,

where A = J2 and B is given in (2.6).
Two complex eigenvectors satisfying the conditions Aq = iω1q, A

T p = −iω1p and
⟨p, q⟩ = 1 can be chosen as q =

(
1 0 iω1 − c 0

)T and p = i
2ω1

(
c− iω1 0 1 0

)T
,

while h11 =
(
0 0 0 −2

)T , and h20 = 1
4ω2

1+d−bn−2biω1

(
0 4iω1 0 −2 (d− bn)

)T .
Thus, using formula (5.39) in [5], the first Lyapunov coefficient at β = 0 is obtained into
the form:

l1 =
1

ω1

c
(
4ω2

1 + d− bn
)
− 2bω2

1

(4ω2
1 + d− bn)2 + 4b2ω2

1

.

The Hopf bifurcation condition l1(0) ̸= 0 is satisfied iff c
(
4ω2

1 + d− bn
)
− 2bω2

1 ̸= 0. □
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In Figure 2, projections of the attractive limit cycle corresponding to the specified pa-
rameters on the planes (y, x), (x, z), (x, u), (y, u) and on the spaces (x, y, z), (x, y, u) are
represented, while in Figure 3, the time series of the four variables corresponding to this
cycle are given. Remark that in this case a periodic control u determines periodic be-
haviour for the real interest rate x, for the investment demand y, and for the inflation rate
z.

FIGURE 2. Projections of the limit cycle corresponding to P2, parameters:
a = 0.1, b = 2, c = 0.5, d = 1.4, n = 1.

As l1(0) = 0, we get n = d
b +

4(1−c2)
b − 2(1−c2)

c . The following result holds.

Theorem 2.9. As l1(0) = 0, the second Lyapunov coefficient reads

(2.9) l2(0) =
c3 (−2c+ b (2 + d))

2b3 (c2 − 1)
.

A Bautin bifurcation could take place at the equilibrium P2, when parameters transversally cross
the stratum b > 0, d ̸= bn, n

d − a− c = 0, and 1 + ac− nc
d > 0, provided

l2(0) ̸= 0.

Proof. Using the notations in [18], the complex vectors involved in the computation of the
second Lyapunov coefficient corresponding to the Hopf bifurcation at P2 read:
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FIGURE 3. Time series for the variables on the limit cycle in Figure 2.

h21 = 4iω1

(1−c2+3ω2
1)(d−b(n+2iω1)+4ω2

1)

(
c− iω1 0 −(c2 + ω2

1) 0
)T

,

h30 = 12iω1

(d−b(n+2iω1)+4ω2
1)(−1+c2+9ω2

1)

(
−c− 3iω1 0 1 0

)T ,

h31 = 6

(d−b(n+2iω1)+4ω2
1)

2

(
0 h2

31 0 h4
31

)T
, h22 =

(
0 h2

22 0 h4
22

)T
, where

h2
31 = 4idω1 +

8ω2
1(c−iω1)

c2−1−3ω2
1
− 2(c+iω1)(bn−d+4ω2

1)
d−b(n+2iω1)+4ω2

1
+

8ω2
1(c+3iω1)

c2−1+9ω2
1
,

h4
31 = 4dω1 (2ω1 − ib) + 4(d−bn)ω1(ic+ω1)

c2−1−3ω2
1

− 2(d−bn)(c+iω1)(b+4iω1)
d−b(n+2iω1)+4ω2

1
+ 4iω1(d−bn)(c+3iω1)

c2−1+9ω2
1

,

h2
22 =

8(−2bω2
1+c(d−bn+4ω2

1))
(d−bn)(d2−8bnω2

1+16ω4
1+b2(n2+4ω2

1)+d(−2bn+8ω2
1))

,

h4
22 = 16ω1

c2−1−3ω2
1

[
ic+ω1

d−b(n+2iω1)+4ω2
1
+ −ic+ω1

d−b(n−2iω1)+4ω2
1

]
− bh2

22.

As l1 = 0, we get n = d
b+

4(1−c2)
b − 2(1−c2)

c . In this case, the second Lyapunov coefficient
reads (2.9). □

Theorem 2.10. A subcritical Hopf bifurcation takes place at the equilibrium P2, when parameters
transversally cross the stratum b = 0, d > 0, n

d − a− c = 0, and 1 + ac− nc
d > 0.

Proof. We may consider the bifurcation parameter β = n
d −a−c, and the bifurcation value

β = 0. For b = 0, d > 0, n
d − a − c = 0, and 1 + ac − nc

d > 0, and the Jacobian matrix
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J2 has a pair of purely imaginary eigenvalues, λ3,4(0) = ±iω1. Close to β = 0, we have
Re(λ3,4(β)) = 1

2β, thus the transversality condition ∂Re(λ3,4(β))
∂β |β=0 ̸= 0, from the Hopf

bifurcation Theorem, is satisfied.
Computations similar to those in Theorem 2.8 lead to the following expression for the

Lyapunov coefficient at the bifurcation value:

l1(0) =
1

ω1

c

(4ω2
1 + d)

.

As the parameters c, d are positive, it follows that l1 (0) > 0. According to the Hopf bifur-
cation Theorem, a subcritical Hopf bifurcation takes place. □

Remark 2.2. As a consequence, a repulsive limit cycle appears on the center manifold,
close to the bifurcation stratum, with n

d − a− c < 0.

2.3. Stability and Hopf bifurcation at P3 and P4. The equilibria P3 and P4 exist in the
hypothesis c− b− abc ≥ 0. If c− b− abc = 0, they both coincide with P1.

Theorem 2.11. Assume c − b − abc > 0. Denote by d0 = c
ac+1n. The following assertions are

valid.
1) If d < d0, then P3 is a saddle or Hopf singularity.
2) If d > d0 then P3 is an attractor or a saddle or a Hopf singularity.
3) If d = d0, then P3 is a fold or a fold-Hopf singularity.

Proof. Denote by y0 = a + 1
c > 0. The first eigenvalue of P3 is λ1 = − (d− d0) y0, while

the other three are the roots of

(2.10) λ3 + c2λ
2 + c1λ+ c0 = 0

where

c2 = a+ b+ c− y0, c1 = 2α+ b (a− y0) + c (a+ b− y0) + 1, c0 = 2 (c− b− abc) .

Notice that c0 > 0, c2 = b+ c− 1
c and c1 = bc− 2ab+ 2− 3b

c . Thus λ2λ3λ4 = −c0 < 0.
1) If d < d0, then λ1 > 0, thus, when P3 is hyperbolic, it is a saddle.
2) If d > d0, then λ1 < 0, thus, when P3 is hyperbolic, it is either saddle or an attractor.
Using the Hurwitz conditions, the equation (2.10) has all eigenvalues with negative

real parts if and only if c2 > 0, c2c1 > c0.
3) As d = d0, then λ1 = 0, thus P3 is either fold singularity or a fold-Hopf singularity.

□

Remark 2.3. If d > d0, c1 > 0 and c2c1 = c0, the system has a Hopf singularity at P3.

Indeed, (2.10) reads in this case (λ+ c2)
(
c1 + λ2

)
= 0, thus, ±i

√
c1 are two purely com-

plex roots. In addition, the other two eigenvalues are both negative, λ1 = − (d− d0)
ac+1

c <
0 and λ2 = −c2 < 0, whenever d > d0. The existence of a Hopf bifurcation at P3 can be an-
alyzed as the one for P1 or P2 above. Note that if a supercritical Hopf bifurcation occurs,
the stable limit cycle is attractive not only on the center manifold.

As the characteristic equation associated to the Jacobi matrix at P4 coincides with the
one of P3, the topological types of the two equilibria P3 and P4 are the same.

3. DEGENERATE HOPF SINGULARITY P2

Theorem 3.12. As b = 0, d < 0, and (i) n
d − a− c ̸= 0,1 + ac− nc

d ̸= 0, or (ii) n
d − a− c = 0,

1 + ac− nc
d < 0, the equilibrium P2 is a degenerate Hopf singularity, of order at least 3.

In addition, a local two-dimensional center manifold is given by

x = 0, z = 0,
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up to sixth order terms.

Proof. For b = 0, d < 0, and (i) or (ii), the Jacobian matrix J2 has a pair of purely imag-
inary eigenvalues, λ1,2(0) = ±iω2, with ω2 =

√
−d, while the other two eigenvalues

have nonzero real parts. Thus, there exists a two-dimensional local center manifolds T c

through P2.
Perform the transformations x1 = x, x2 = y − n

d , x3 = z, x4 = u − 1, to bring the
equilibrium P2 at the origin of the system

(3.11) ẋ = f (x) ,

where f(x) = Ax+ 1
2B(x, x), with A =


n
d − a 0 1 0
0 0 0 −1
−1 0 −c 0
0 −d 0 0

 .

Choosing the two complex eigenvectors, satisfying the conditions Aq = λ1q, A
T p =

−λ1p, and ⟨p, q⟩ = 1, as q =
(
0 1 0 −iω2

)T and p =
(
0 1

2 0 − i
2ω2

)T
and

using the formulae in [18], we obtain

h11 =
(
0 0 0 0

)T
, h20 =

(
0 − 2

3 iω2 0 4
3d

)T
.

Consequently, we get

(3.12) G21 = ⟨p,B(q̄, h20) + 2B(q, h11)⟩ = − id2

3ω2
,

thus, the first Lyapunov coefficient reads:

(3.13) l1 =
1

2
Re (G21) = 0.

We may now compute the second Lyapunov coefficient. We get

h30 =
(
0 3

4d 0 − 9
4 idω2

)T
, h21 =

(
0 − 1

6d 0 − 1
6 idω2

)T
As l1 = 0, using the coefficients of forth order term, given by the formulae in [18], we
obtain

h40 =
(
0 − 1

10 idω2 0 2
5d

2
)T

, h31 =
(
0 − 1

2 idω2 0 d2
)T

, h22 =
(
0 0 0 0

)T
.

Thus,

G32 =
id3

12ω2
,

and the second Lyapunov coefficient has the expression:

l2 =
1

12
Re (G32) = 0.

Next, we have

h32 =
(
0 − 1

24d
2 0 − 1

24 id
2ω2

)T
, h41 =

(
0 349

240d
2 0 − 349

80 id2ω2

)T
,

h33 =
(
0 0 0 0

)T
, h42 =

(
0 − 31

36 id
2ω2 0 31

18d
3
)T

.

Thus,

G43 =
21id4

8ω2
,

and the third Lyapunov coefficient is:

l3 =
1

144
Re (G43) = 0.
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Consequently, on the 2-dimensional center manifold W c
loc the system reads

(3.14) w′ = iω0w +O(|w|8).
Thus, the equilibrium in origin is a degenerate Hopf singularity, of order at least three.

Using the real variable x, the center manifold can be parameterized by w ∈ C, as

(3.15) x = H(w, w̄),

where H is given by

(3.16) H(w, w̄) = wq + w̄q̄ +
∑

2≤j+k≤n

1

j!k!
hjkw

jw̄k +O
(
|w|n+1

)
,

with hjk ∈ C, hjk = h̄kj ,[18].
Substituting in (3.15) the expressions determined for q and hjk, we find for the center

manifold the equations

x1 = 0 +O
(
|w|7

)
,

x3 = 0 +O
(
|w|7

)
.

□

If all Lyapunov coefficients are zero, the 2-dimensional system (3.14) has a family of
closed orbits around a nonlinear center, corresponding to a family of closed orbits for the
4-dimensional system, situated on the center manifold.

In Figure 4 the phase portrait corresponding to the center manifold (y, u) is represented
for some values of the parameters. For u > 0 all the trajectories are closed and surround
the equilibrium point P2. For other values of the parameters the closed orbits in the (y, u)
plane and in the (x, y, u) space are represented in Figure 5.

FIGURE 4. Orbits on the center manifold x = 0, z = 0; parameters: a =
1, b = 0, c = 0.4, d = −1, n = −0.5.

Taking into account the effect of the other stable or unstable manifolds of the equilib-
rium P2, these orbits could either attract or repel orbits through points close to the center
manifold. For instance, as n

d − a − c < 0, and 1 + ac − nc
d > 0, the equilibrium P2 has a

2-dimensional stable manifold W s
loc. Thus, the closed orbits on the center manifold W c

loc

attract trajectories close to W c
loc. In Figure 6 three such trajectories are plotted for param-

eters a = 1, b = 0, c = 1, d = −1, n = 0.
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FIGURE 5. Closed orbits on the center manifold in the (y, u) plane (left)
and in the (x, y, u) space (right), parameters: a = 1, b = 0, c = 1, d =
−1, n = 0; time t ∈ [400, 500]

FIGURE 6. Three orbits in the (x, y, u) space attracted by closed orbits
situated on the center manifold (y, u); time series for these orbits, param-
eters: a = 1, b = 0, c = 1, d = −1, n = 0.

Unlike the situation in Figure 3, a periodic control u determines the stability of the real
interest rate x and of the inflation rate z, while the investment demand y is periodic.

4. DEGENERATE HOPF-HOPF BIFURCATION AT P2

Theorem 4.13. A degenerate Hopf-Hopf bifurcation takes place at the equilibrium P2, when pa-
rameters satisfy b = 0, d < 0, n

d − a− c = 0, and 1 + ac− nc
d > 0.

Proof. Consider the bifurcation parameter β = (β1, β2) , β1 = n
d − a − c, β2 = −b, and

the bifurcation value β = (0, 0). For b = 0, d < 0, n
d − a − c = 0, and 1 + ac − nc

d > 0,
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the Jacobian matrix J2 has two pairs of purely imaginary eigenvalues, Λ1,4(0) = ±iω1,
Λ2,3 = ±iω2, with ω2

1 = 1− c2, ω2
2 = −d, and Re (Λ1,4(β)) =

1
2β1, Re (Λ2,3(β)) =

1
2β2.

At β = 0, the transformation τ(P2), brings the equilibrium P2 at the origin of the system

(4.17) ẋ = Ax+ F (x) ,

where

A =


c 0 1 0
0 0 0 −1
−1 0 −c 0
0 −d 0 0

 , F (x) =


x1x2

−x2
1

0
−dx2x4

 .

Following the lines in [5], p. 351, at β = 0, we choose the complex eigenvectors q1, q2, p1, p2
satisfying the conditions Aq1 = iω1q1, Aq2 = iω2q2, A

T p1 = −iω1p1, A
T p2 = −iω2p2,

normalized such that ⟨p1, q1⟩ = 1, ⟨p2, q2⟩ = 1. These vectors can be chosen as q1 =(
1 0 iω1 − c 0

)T , q2 =
(
0 1 0 −iω2

)T ,

p1 = i
2ω1

(
c− iω1 0 1 0

)T
, and p2 =

(
0 1

2 0 − i
2ω2

)T
.

Changing to the complex coordinates z1, z2, given by

x = z1q1 + z̄1q̄1 + z2q2 + z̄2q̄2 =


z1 + z̄1
z2 + z̄2

(iω1 − c) z1 − (c+ iω1) z̄1
−iω2 (z2 − z̄2)


we find

z1 : = ⟨p1, x⟩ = − i

2ω1
(c+ iω1)x1 −

i

2ω1
x3,

z2 : = ⟨p2, x⟩ =
1

2
x2 +

i

2ω2
x4,

and, at β = 0, system (4.17) takes the complex form

(4.18)
{

ż1 = iω1z1 + g (z1, z̄1, z2, z̄2) ,
ż2 = iω2z2 + h (z1, z̄1, z2, z̄2) ,

where

g (z1, z̄1, z2, z̄2) = ⟨p1, F (z1q1 + z̄1q̄1 + z2q2 + z̄2q̄2)⟩ ,
h (z1, z̄1, z2, z̄2) = ⟨p2, F (z1q1 + z̄1q̄1 + z2q2 + z̄2q̄2)⟩ .

We obtain

g (z1, z̄1, z2, z̄2) = γ (z1 + z̄1) (z2 + z̄2) ,

h (z1, z̄1, z2, z̄2) = −1

2
(z1 + z̄1)

2 − d

2

(
z22 − z̄22

)
,

with

γ = − i(c+ iω1)

2ω1
=

1

2
− ic

2ω1
.

In the hypothesis kω1 ̸= lω2, for k, l ∈ N, k + l ≤ 5, the Poincaré normal form of (4.18)
in complex coordinates (w1, w2) near β = 0 reads [5]
(4.19)

ẇ1 = Λ1 (β)w1 +G2100 (β)w1 |w1|2 +G1011 (β)w1 |w2|2 +G3200 (β)w1 |w1|4

+G2111 (β)w1 |w1|2 |w2|2 +G1022 (β)w1 |w2|4 +O
(
∥(w1, w̄1, w2, w̄2)∥6

)
,

ẇ2 = Λ2 (β)w2 +H1110 (β)w2 |w1|2 +H0021 (β)w2 |w2|2 +H2210 (β)w2 |w1|4

+H1121 (β)w2 |w1|2 |w2|2 +H0032 (β)w2 |w2|4 +O
(
∥(w1, w̄1, w2, w̄2)∥6

)
,
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Using the formulae in [5], p. 353, we find the following expressions for the relevant
third order terms of the Poincaré normal form of system (4.18) at β = 0 :

G2100 (0) =
iγ

2

(
1

2ω1 + ω2
+

1

2ω1 − ω2

)
,

G1011 (0) = −iγ2

(
1

2ω1 + ω2
+

1

2ω1 − ω2

)
,

H1110 (0) =
i

ω2
(d+ γ + γ̄)− i

(
γ

2ω1 + ω2
− γ̄

2ω1 − ω2

)
,

H0021 (0) = − id2

6ω2
.

We deduce

Re (G2100(0)) =
c

4 (1− c2) + d
,

Re (G1011(0)) = − 2c

4 (1− c2) + d
,

Re (H1110(0)) = − 2c

4 (1− c2) + d
,

Re (H0021(0)) = 0.(4.20)

Thus, condition (HH.4) in [5], Lemma 8.14, is not satisfied and the Hopf-Hopf bifurca-
tion corresponding to the equilibrium point P2 is degenerated. □

A more detailed study of the phenomena involved by the presence of this degenerate
Hopf-Hopf bifurcation may be further performed using techniques as in [15], [16], [19],
[20].

5. CONCLUSIONS

The 4D system designed by us, starting with the 3D Ma & Chen financial model, ex-
hibits a rich dynamics: stable equilibria, hyperbolic saddles, non-hyperbolic points of
fold, Hopf, double-zero, fold-Hopf, Hopf-Hopf, triple-zero, double-zero-Hopf, nonlinear
center type, stable limit cycles, unstable limit cycles.

Compared to the initial 3D system, we found that by adding the feed-back control func-
tion, a new equilibrium point appears, and so new possibilities to stabilize the economic
environment to a stable equilibrium state or to stable periodic behavior.
Acknowledgments. Supported by Dynamics H2020-MSCA-RISE-2017 - 777911.
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[15] Moza, G.; Sterpu, M.; Rocşoreanu, C. An analysis of two degenerate double-Hopf bifurcations. Electronic
Research Archive 30 (2022), 382-403.

[16] Moza, G.; Constantinescu, D.; Efrem, R. An analysis of a class of Lotka-Volterra systems. Qual. Theory Dyn.
Syst. 21 (2022), Art. ID 32.

[17] Sotomayor, J.; Mello, L. F.; Braga, D. de C. Bifurcation analysis of the Watt governor system. Comput. Appl.
Math. 26 (2007), 19–44.

[18] Sotomayor, J.; Mello, L. F.; Braga, D. de C. Lyapunov coefficients for degenerate Hopf bifurcations. arX-
ivpreprint arXiv:0709.3949 (2007), 16 pp.

[19] Tigan, G.; Lazureanu, C.; Munteanu, F.; Sterbeti, C.; Florea, A. Bifurcation diagrams in a class of Kol-
mogorov systems. Nonlinear Anal. Real World Appl. 56 (2020), Art. ID 103154.

[20] Tigan, G.; Lazureanu, C.; Munteanu, F.; Sterbeti, C.; Florea, A. Analysis of a class of Kolmogorov systems.
Nonlinear Anal. Real World Appl. 57 (2021), Art. ID 103202.

[21] Yang, T. Dynamical analysis on a finance system with nonconstant elasticity of demand. Int. J. Bifurc. Chaos
30 (2020), Art. ID 2050148.

[22] Zhao, X.; Li, Z.; Li, S. Synchronization of a chaotic finance system. Appl. Math. Comput. 217 (2011),
6031–6039.

1DEPARTMENT OF MATHEMATICS

POLITEHNICA UNIVERSITY OF TIMIŞOARA
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