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Voronovskaja type theorem for some nonpositive
Kantorovich type operators

BIANCA IOANA VASIAN

ABSTRACT. In this paper we will study a Voronovskaja type theorem and a simultaneous approximation
result for a new class of generalized Bernstein operators. The new operators are obtained using a generalization
of Kantorovich’s method, namely, we will introduce a sequence of operators Kl

n = Dl ◦Bn+l ◦ Il, where Bn+l

are Bernstein operators, Dlf = f (l) + al−1f
(n−1) + · · · + a1f ′ + a0f is a differential operator with constant

coefficients aj , j ∈ {0, . . . , l− 1} and Il a corresponding antiderivative operator such that Dl ◦ Il = Id.

1. INTRODUCTION

S. N. Bernstein introduced, in paper [2], the following sequence of positive and linear
operators, in order to prove Weierstrass’s approximation theorem [13]:

(1.1) Bn (f, x) =

n∑
k=0

pn,k (x) f

(
k

n

)
, x ∈ [0, 1] , f ∈ C [0, 1]

where pn.k (x) =
(
n
k

)
xk (1− x)

n−k
, for 0 ≤ k ≤ n, and pn.k (x) = 0 for k > n. These op-

erators have been extensively studied. Bernstein operators can be useful in the uniform
approximation of all continuous functions on [0, 1]. Also, these operators play an impor-
tant role in simultaneous approximation, that is, for f ∈ Ck [0, 1] we have (Bnf)

(k) → f (k),
uniformly as n → ∞, see [3, 11].

M. Floater, in paper [4], proved the following Voronovskaja type theorem regarding the
derivatives of Bernstein operators:

Theorem 1.1. If f ∈ Ck+2 [0, 1] , for some k ≥ 0 then

lim
n→∞

n
[
(Bn (f, x))

(k) − f (k) (x)
]
=

1

2

dk

dxk
[x (1− x) f ′′ (x)] ,

uniformly for x ∈ [0, 1] .

One of the many generalizations of Bernstein operators, which we will use throughout
our paper, was given by D.D. Stancu in [10], who introduced a modification of Bernstein
operators depending on two parameters 0 ≤ α ≤ β :

(1.2) Bα,β
n (f, x) =

n∑
k=0

pn,k (x) f

(
k + α

n+ β

)
, x ∈ [0, 1] , f ∈ C [0, 1] ,

and proved that
∥∥Bα,β

n f − f
∥∥ → 0 as n → ∞. Further, it was shown that for f ∈ Ck [0, 1] ,

the simultaneous approximation (Bα,β
n f)(k) → f (k) holds uniformly (see [1]).
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Another generalization of high importance was introduced by Kantorovich in paper
[6]. The operators studied there can be constructed as follows: let D = d

dx be a differential
operator, and I a corresponding antiderivative operator, with respect to the composition
D ◦ I = Id, and If(0) = 0. In this case, the antiderivative operator is given by If(x) =∫ x

0
f (t) dt. Therefore Kantorovich operators are obtained as the following composition:

(1.3) Kn = D ◦Bn+1 ◦ I,

where Bn+1 are the Bernstein operators of order n+1. Explicitly, the operators constructed
as in (1.3) have the following expression:

(1.4) Kn (f, x) = (n+ 1)

n∑
k=0

pn,k (x)

k+1
n+1∫
k

n+1

f (t) dt, x ∈ [0, 1], f ∈ L1[0, 1].

Bernstein-Kantorovich operators from (1.4) can be used to uniformly approximate all
functions in L1 [0, 1] .

A notable generalization of Bernstein-Kantorovich operators using Kantorovich’s method
was studied in papers [5, 7, 9]. In these papers were analyzed the operators obtained by
taking the derivative operators Dk = dk

dxk , and the antiderivative operators as Ikf (x) =∫ x

0
(x−t)k−1

(k−1)! f (t) dt, and considering the operators K̃n = Dk ◦Bn ◦Ik now called k-th order

Kantorovich operators. They proved the uniform convergence K̃nf → f, for f ∈ L1 [0, 1] .
In paper [8], Păltănea R. used Kantorovich’s method to modify Bernstein operators,

this time by taking a more general differential operator Dcf = f ′ + cf . In this paper
it was proved that the operators constructed as K∗

n = Dc ◦ Bn+1 ◦ Ic can be used to
approximate functions on C[0, 1] and these operators are linear but not positive. Here Ic is
a corresponding antiderivative operator of the form Icf(x) = e−cx

∫ x

0
ectf(t)dt, Icf(0) =

0, such that Dc ◦ Ic = Id.
In this paper, we will study a Voronovskaja type theorem and a simultaneous approx-

imation property of the operators we introduced in paper [12]. These operators are con-
structed using a more general differential operator: let l ∈ {1, 2, . . . } ,

(1.5) Dlg = g(l) + al−1g
(l−1) + · · ·+ a1g

′ + a0g,

a0, a1, a2, . . . , al−1 ∈ R. By an antiderivative operator of Dl we mean an operator I l which
satisfies Dl ◦ I l = Id. This condition leads to:(

Dl ◦ I l
)
(f) = f,

which is equivalent with:

(1.6)
(
I lf

)(l)
+ al−1

(
I lf

)(l−1)
+ · · ·+ a1

(
I lf

)′
+ a0

(
I lf

)
= f.

The equation (1.6) is a linear differential equation of order l with constant coefficients
for which it is known that its solutions, I lf ∈ Cl[0, 1], exist but are not unique. Since
there is an infinity of such antiderivative operators, one can obtain a unique fixed one by
imposing some initial values of I lf and its derivatives up to order l − 1 in a certain point
x0, but for the construction of the operators studied in this paper, the exact expression
of the antiderivative operators does not play an important role. Choosing a different
antiderivative operator, our operator will be different, but the approximation processes
we study don’t depend on the choice of the antiderivative operator.
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The Kantorovich type operators for which we will study the approximation properties
mentioned before, are defined as:

(1.7) Kl
n = Dl ◦Bn+l ◦ I l,

where Bn+l are the Bernstein operators of order n+ l, n ≥ 1, l ≥ 0.

Remark 1.1. We chose the order n + l of Bernstein operators in (1.7) in order to not have
vanishing terms after differentiation of order l ≥ 0.

Remark 1.2. We mention that our operators are a generalization of the ones studied in
papers [5, 7, 8, 9].

Further, we will present the steps we followed to obtain the expression of our operators.
In order to express the derivatives of Bernstein operators we will need the finite differ-

ences ∆hf (x) = f (x+ h) − f (x) which is the first finite difference of f with step h. The
l-th iterate of ∆ is denoted by ∆l and is defined as follows

(1.8) ∆l
hf (x) = ∆h

[
∆l−1

h f (x)
]
,

and has the following expression

(1.9) ∆l
hf (x) =

l∑
i=0

(−1)
l−i

(
l

i

)
f (x+ ih) .

Now, it is known that the l-th derivative of Bernstein operators Bn can be written in
terms of finite differences of order l as follows, see [3]:

(1.10) B(l)
n (f, x) =

n!

(n− l)!

n−l∑
j=0

∆l
1
n
f

(
j

n

)
pn−l,j (x) , x ∈ [0, 1].

With all the above considerations, the operators which will be studied in this paper,
Kl

n (f, x) =
(
Dl ◦Bn+l ◦ I l

)
(f, x) , x ∈ [0, 1], f ∈ C[0, 1], can be written as

(1.11) Kl
n (f, x) = Dl

(
Bn+lI

lf
)
(x) , x ∈ [0, 1], f ∈ C[0, 1].

To simplify the notations we will denote I lf := F and we will obtain the following explicit
representation of the operators Kl

n:

Kl
n (f, x) =(1.12)

= [Bn+l (F, x)]
(l)

+ al−1 [Bn+l (F, x)]
(l−1)

+ · · ·+ a1 [Bn+l (F, x)]
′
+ a0Bn+l (F, x)

=
(n+ l)!

n!

n∑
j=0

∆l
1

n+l
F

(
j

n+ l

)
pn,j (x)+

+al−1
(n+ l)!

(n+ 1)!

n+1∑
j=0

∆l−1
1

n+l

F

(
j

n+ l

)
pn+1,j (x)+

+ · · ·+ a1
(n+ l)!

(n+ l − 1)!

n+l−1∑
j=0

∆ 1
n+l

F

(
j

n+ l

)
pn+l−1,j (x) + a0Bn+l (F, x) .

Remark 1.3. The operators in (1.12) are linear operators.

We proved in paper [12] the following results concerning these operators:

Remark 1.4. Operators (1.12) are not positive.
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Lemma 1.1. [12] Let F be a Ck function on a compact interval I, then the following convergence

holds:

(1.13) (n+ l)
k
∆k

1
n+l

F (x) → F (k) (x) , uniformly as n → ∞, x ∈ I.

Using the result in Lemma 1.1 we proved that the following approximation result holds
even though the operators are not positive operators:

Theorem 1.2. [12] Let f ∈ C [0, 1] . The following convergence holds:

(1.14) Kl
nf → f, uniformly as n → ∞.

Further, the following remark states that, using operators Kl
n and Theorem 1.2, we can

show that Bn+l can approximate differential operators Dl.

Remark 1.5. Let us denote

F = {g ∈ C[a, b], I lDlg = g}.

If g ∈ F , then DlBn+lg = DlBn+lI
lDlg = Kl

nD
lg. Now, by applying Theorem 1.2 we

have Kl
nD

lg → Dlg. Consequently, we get

DlBn+lg → Dlg, as n → ∞, for g ∈ F .

2. VORONOVSKAJA TYPE THEOREM

In this section we will prove a Voronovskaja type theorem for the operators Kl
n.

Let I l be the antiderivative operator corresponding to the differential operator Dl. For
simplicity, we denote I lf(x) := F (x).

Let us introduce the following differential operator:

(2.15) Dl
yg(x) = ylg(l−1)(x) + al−1y

l−1g(l−2)(x) + al−2y
l−2g(l−3)(x) + · · ·+ a1yg(x).

Theorem 2.3. Let f ∈ C2 [0, 1] and F ∈ Cl+2[0, 1], then

lim
n→∞

n
[
Kl

n (f, x)− f (x)
]
=

1

2
Dl

{
x (1− x) [F (x)]

′′}(2.16)

=
1

2
x (1− x) f ′′ (x) +

(
1

2
− x

)
∂Dl

yF
′′(x)

∂y

∣∣∣
y=1

− 1

2

∂2Dl
yF

′(x)

∂y2

∣∣∣
y=1

.

uniformly for x ∈ [0, 1].

Proof. We have that

Kl
n (f, x) = Dl(Bn+l

(
I lf(x)

)
),

and we can write f (x) = Dl (F (x)) = F (l)(x) + al−1F
(l−1)(x) + · · · + a1F

′(x) + a0F (x).
Now, we compute:

n
[
Kl

n (f, x)− f (x)
]
= n

{
[Bn+l (F, x)]

(l)
+ al−1 [Bn+l (F, x)]

(l−1)
+

· · ·+ a1 [Bn+l (F, x)]
′
+ a0 [Bn+l (F, x)]− nDl (F (x))

}
= n

{
[Bn+l (F, x)]

(l) − F (l)(x)
}
+ al−1n

{
[Bn+l (F, x)]

(l−1) − F (l−1)(x)
}
+

+ · · ·+ a0n {[Bn+l (F, x)]− F (x)} .
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Passing to the limit, with n → ∞, and using Theorem 1.1, we get:

lim
n→∞

n
[
Kl

n (f, x)− f (x)
]
=(2.17)

=
1

2

{
dl

dxl
[x(1− x)F ′′(x)] + al−1

dl−1

dxl−1
[x(1− x)F ′′(x)] + . . .

+a1
d

dx
[x(1− x)F ′′(x)] + a0x(1− x)F ′′(x)

}
=

1

2
Dl [x(1− x)F ′′(x)] .

For the last expression we will use Leibniz formula in order to obtain the derivative of
x(1− x)F ′′(x) of an arbitrary order k:

[x(1− x)F ′′(x)]
(k)

= x(1− x) [F ′′(x)]
(k)

+ k(1− 2x) [F ′′(x)]
(k−1) − k(k − 1) [F ′′(x)]

(k−2)
.

(2.18)

Using the expression of Dl and relation (2.18), we get:

Dl [x(1− x)F ′′(x)] =(2.19)

= [x(1− x)F ′′(x)]
(l)

+ al−1 [x(1− x)F ′′(x)]
(l−1)

+ · · ·+ a0 [x(1− x)F ′′(x)]

= x(1− x) [F ′′(x)]
(l)

+ l(1− 2x) [F ′′(x)]
(l−1) − l(l − 1) [F ′′(x)]

(l−2)
+

+al−1

{
x(1− x) [F ′′(x)]

(l−1)
+ (l − 1)(1− 2x) [F ′′(x)]

(l−2) − (l − 1)(l − 2) [F ′′(x)]
(l−3)

}
+

+ · · ·+ a1x(1− x) [F ′′(x)]
′
+ a1(1− 2x) [F ′′(x)] + a0x(1− x)F ′′(x).

After some computations we get:

Dl [x(1− x)F ′′(x)] =(2.20)

= x(1− x)
{
[F ′′(x)]

(l)
+ al−1 [F

′′(x)]
(l−1)

+ · · ·+ a1 [F
′′(x)]

′
+ a0F

′′(x)
}
+

+(1− 2x)
{
l [F ′′(x)]

(l−1)
+ al−1(l − 1) [F ′′(x)]

(l−2)
+ · · ·+ 2a2 [F

′′(x)]
′
+ a1F

′′(x)
}

−
{
l(l − 1) [F ′′(x)]

(l−2)
+ al−1(l − 1)(l − 2) [F ′′(x)]

(l−3)
+ · · ·+ 2a2 [F

′′(x)]
}

= x(1− x)
[
DlF (x)

]′′
+ (1− 2x)

∂Dl
yF

′′(x)

∂y

∣∣∣
y=1

−
∂2Dl

yF
′(x)

∂y2

∣∣∣
y=1

= x(1− x)f ′′(x) + (1− 2x)
∂Dl

yF
′′(x)

∂y

∣∣∣
y=1

−
∂2Dl

yF
′(x)

∂y2

∣∣∣
y=1

,

which is the result announced in hypothesis. □

3. SIMULTANEOUS APPROXIMATION

In the next part of our paper we will prove a simultaneous approximation result con-
cerning operators Kl

n.

Theorem 3.4. Let f ∈ Cr[0, 1] with r ∈ N ∪ {0}. Then:

(3.21) lim
n→∞

[Kl
n(f, x)]

(r) = f (r)(x),

holds uniformly and F ∈ Cl+r[0, 1].
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Proof. We will need the expression of [Kl
n(f, x)]

(r), for n > r:

[Kl
nf (x)](r) =

(n+ l)!

(n− r)!

1

(n+ l)
l+r

n−r∑
j=0

(n+ l)
l+r

∆l+r
1

n+l

F

(
j

n+ l

)
pn−r,j (x)+(3.22)

+al−1
(n+ l)!

(n− r + 1)!

1

(n+ l)
l+r−1

n−r+1∑
j=0

(n+ l)
l+r−1

∆l+r−1
1

n+l

F

(
j

n+ l

)
pn−r+1,j (x)

+ · · ·+ a1
(n+ l)!

(n+ l − r − 1)!

1

(n+ l)r+1

n+l−r−1∑
j=0

(n+ l)r+1∆r+1
1

n+l

F

(
j

n+ l

)
pn+l−r−1,j (x)

+a0 [Bn+l (F, x)]
(r)

= A−r
n

n−r∑
j=0

(n+ l)
l+r

∆l+r
1

n+l

F

(
j

n+ l

)
pn−r,j (x)+

+al−1A
−r+1
n

n−r+1∑
j=0

(n+ l)
l+r−1

∆l+r−1
1

n+l

F

(
j

n+ l

)
pn−r+1,j (x)+

+ · · ·+ a1A
l−r−1
n

n+l−r−1∑
j=0

(n+ l)r+1∆r+1
1

n+l

F

(
j

n+ l

)
pn+l−r−1,j (x) + a0 [Bn+l (F, x)]

(r)
,

where Ak
n := (n+l)!

(n+k)!
1

(n+l)l−k , k ∈ {−r,−r + 1, . . . , l − r − 1}.
For all ε > 0, there exists n1

ε ∈ N such that
∣∣Ak

n − 1
∣∣ < ε for n ≥ n1

ε, for k ∈ {−r,−r +
1, . . . , l − r − 1}, and, as we proved in Lemma 1.1 we also have that for all ε1 > 0, there
exists nε1 ∈ N such that

∣∣∣(n+ l)k∆k
1

n+l

F
(

j
n+l

)
− F (k)

(
j

n+l

)∣∣∣ < ε1 for all n ≥ nε1 . With

these considerations we have:∣∣∣∣∣∣[Kl
nf (x)

](r) −
n−r∑

j=0

F (l+r)

(
j

n+ l

)
pn−r,j (x) + al−1

n−r+1∑
j=0

F (l−1)

(
j

n+ l

)
pn−r+1,j (x)+

+ · · ·+ a1

n+l−r−1∑
j=0

F (r+1)

(
j

n+ l

)
pn+l−r−1,j (x) + a0 [Bn+l (F, x)]

(r)

∣∣∣∣∣∣ → 0.

Now, we notice that the sums appearing above can be expressed in terms of Bernstein-
Stancu operators as follows:

n+k∑
j=0

F (p)

(
j

n+ l

)
pn+k,j (x) = B0,l−k

n+k

(
F (p), x

)
, −r ≤ k ≤ r − l − 1, p = l − k ≥ 0.

For these operators it is known that B0,l−k
n+k

(
F (p), x

)
→ F (p) (x) as n → ∞, uniformly with

respect to x. Therefore, we obtain:

lim
n→∞

[
Kl

nf (x)
](r)

= F (l+r) (x) + al−1F
(l−1+r) (x) + · · ·+ a1F

(r+1) (x) + a0 [F (x)]
(r)

(3.23)

=
[
F (l) (x) + al−1F

(l−1) (x) + · · ·+ a1F
′ (x) + a0F (x)

](r)
=

[
Dl ◦ I l(f(x))

](r)
= f (r)(x),

which completes our proof.
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□

4. EXAMPLE

In this final section we will take a particular case of our operators and we will present
some computations and graphics.

Let D∗f = f ′′ − 3f ′ + 2f be a differential operator of order two and I∗, a fixed cor-
responding antiderivative operator, in the sense D∗ ◦ I∗ = Id, with initial conditions
I∗f(0) = 0 and (I∗f)

′
(0) = 0. The condition (D∗ ◦ I∗) f = f , f ∈ C2[0, 1], leads to the

following differential equation:

(4.24) (I∗f)
′′
(x)− 3 (I∗f)

′
(x) + 2 (I∗f) (x) = f(x).

In order to get the solution, we will first solve the homogeneous equation:

(I∗f)
′′
(x)− 3 (I∗f)

′
(x) + 2 (I∗f) (x) = 0,

for which the solution, denoted by Io is given by:

(4.25) Io(x) = C1e
x + C2e

2x,

with C1, C2 constants. In order to get the solution of the non-homogeneous equation
we consider that the solution I∗f of the equation (4.24) is given by I∗f(x) = C1(x)e

x +
C2(x)e

2x, where C1(x) and C2(x) are functions instead of constants. In order to obtain the
missing functions C1(x) and C2(x), we will solve the following system:

(4.26)

{
C ′

1(x)e
x + C ′

2(x)e
2x = 0

C ′
1(x)e

x + 2C ′
2(x)e

2x = f(x)
,

from which we obtain the exact solution I∗f(x) after imposing the initial conditions I∗f(0) =
0 and (I∗f)

′
(0) = 0:

(4.27) I∗f(x) =

∫ x

0

ex−t
(
ex−t − 1

)
f(t)dt, x ∈ [0, 1].

We denote F (x) := I∗f(x).
Now, let us consider the operators:

(4.28) K∗
n(f, x) = (D∗ ◦Bn+2 ◦ I∗f) (x) = D∗ (Bn+2(F, x)) , x ∈ [0, 1].

Then the operators K∗
n(f, x) have the following expression:

K∗
n(f, x) = (n+ 1)(n+ 2)

n∑
k=0

pn,k(x)

(
F

(
k + 2

n+ 2

)
− 2F

(
k + 1

n+ 2

)
+ F

(
k

n+ 2

))
+

(4.29)

−3(n+ 2)

n+1∑
k=0

pn+1,k(x)

(
F

(
k + 1

n+ 2

)
− F

(
k

n+ 2

))
+

+2

n+2∑
k=0

pn+2,k(x)F

(
k

n+ 2

)
, x ∈ [0, 1].

Now, we will consider the function f(x) = x3−1.3x2+0.47x−0.035. For this function,
for n = 30 we have obtained the following graphical process, using Wolfram Mathematica
software:
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