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Modified General Inertial Mann and General Inertial
Viscosity Algorithms for Fixed Point and Common Fixed
Point Problems with Applications

SOLOMON GEBREGIORGIS1 , POOM KUMAM1 and THIDAPORN SEANGWATTANA2

ABSTRACT. In this paper, we propose a modified general inertial Mann algorithm and prove that it generates
a sequence which converges weakly to a fixed point of a nonexpansive mapping in Hilbert spaces. Moreover, by
using the viscosity method, we introduce a general inertial viscosity algorithm and prove that it generates a se-
quence which converges strongly to a common fixed point of a countable family of nonexpansive operators. We
also derive schemes for solving constrained convex optimization, monotone inclusion, and nonsmooth convex
optimization problems. Finally, we apply one of our proposed algorithms to solve image restoration problem.

1. INTRODUCTION

Let H be a real Hilbert space and D be a nonempty closed convex subset of H. A self
mapping S on H is said to be nonexpansive if

∥Sy − Sz∥ ≤ ∥y − z∥,
for all y, z ∈ D. The set of fixed points of the mapping S : D → D is defined by F (S) =
{f ∈ D : Sf = f}. This paper considers fixed point problem for a nonexpansive operator
and common fixed point problem for a countable family of nonexpansive operators.

One of the most extensively studied iterative algorithm for approximating fixed points
of nonexpansive mappings is Mann algorithm [23] which is formulated as follows:

(1.1) tn+1 = θntn + (1− θn)Stn,

where {θn} ⊂ [0, 1], limn→∞ θn = 0, and
∑∞
n=1 θn = ∞.

Due to the fact that fast convergence is needed in many practical applications and
Mann algorithm is slow in general (see, [11, 18, 19, 24]), many researchers modified the
Mann algorithm and incorporated inertial extrapolation methods to speed up its conver-
gence (see [1, 6, 10, 12, 21, 22, 29–31]). One of such methods is the general inertial Mann
algorithm [14] which is of the form:

(1.2)


wn = tn + γn(tn − tn−1)

zn = tn + θn(tn − tn−1)

tn+1 = (1− ζn)wn + ζnSzn,

for each n ≥ 1, where {γn}, {θn}, and {ζn} satisfy:
(D1) {γn} ⊂ [0, γ] and {θn} ⊂ [0, θ] are nondecreasing with γ1 = θ1 = 0 and γ, θ ∈ [0, 1);

(D2) for any ζ, α, β > 0, β >
γτ(1 + τ) + γα

1− γ2
and 0 < ζ ≤ ζn ≤ β − γ[τ(1 + τ) + γβ + α]

β[1 + τ(1 + τ) + γβ + α]
where τ = max{γ, θ}.
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Since the iterative sequence {tn} defined by (1.1) has only weak convergence and strong
convergence is often much more desirable than the weak convergence in many practical
problems, Moudafi [25] introduced viscosity approximation method which is shown be-
low:

(1.3) tn+1 = δnv(tn) + (1− δn)Stn,

n ∈ N, t1 ∈ H, δn ⊂ (0, 1), and v is a contraction operator. After that, several algorithms
for fixed points of nonexpansive operators and common fixed points of a countable family
of nonexpansive operators were developed (see [3, 16, 17, 28, 32–34] ).

It is the purpose of this paper to introduce a modified general inertial Mann algorithm
which generalizes the work of Dong et al. [14] by using inertial extrapolation algorithms
mixed with the convex combination of three iterated vectors. Moreover, we prove strong
convergence theorem by combining the general inertial Mann algorithm with the viscosity
method for a countable family of nonexpansive mappings.

The paper is organized as follows: Section 2 presents some lemmas and definitions
which are necessary in the proofs of our theorems. Section 3 establishes weak and strong
convergence theorems. Section 4 shows applications of the proposed algorithms. Finally,
section 5 gives some concluding remarks.

2. PRELIMINARIES

Now, we review some definitions and lemmas which will be used in the sequel.

Lemma 2.1. Let H be a real Hilbert space. Then for all r, q, p ∈ H, we have:

(1) ∥θq + (1− θ)∥2 = θ∥q∥2 + (1− θ)∥p∥2 − θ(1− θ)∥q − p∥2, θ ∈ [0, 1];
(2) ∥q ± p∥2 = ∥q∥2 ± 2⟨q, p⟩+ ∥p∥2;
(3) ∥q + p∥2 ≤ ∥q|2 + 2⟨p, q + p⟩;
(4) ∥βr+ ηq+ ζp∥2 = β∥r∥2 + η∥q∥2 + ζ∥p∥2 − βη∥r− q∥2 − βζ∥r− p∥2 − ηζ∥q− p∥2,

β, η, ζ ∈ [0, 1) such that β + η + ζ = 1.

Lemma 2.2. [2] Let {τn}, {θn}, {ζn} ⊂ [0,∞). If
∑∞
n=1 ζn < ∞, there exists a real number θ

with 0 ≤ θn ≤ θ < 1 for all n ∈ N, and τn+1 ≤ τn + θn(τn − τn−1) + ζn for each n ≥ 1, then

(1)
∑
n≥1[τn − τn−1]+ <∞, where [t]+ = max{t, 0};

(2) there exists τ∗ ∈ [0,∞) such that limn→∞ τn = τ∗.

Lemma 2.3. [5] Let D be a nonempty closed convex subset of H and S : D → H be a nonexpan-
sive mapping. Let {yn} be a sequence in D such that yn ⇀ y ∈ H and Syn − yn → 0 as n→ ∞.
Then y ∈ F (S).

Lemma 2.4. [5] Let E be a nonempty subset of H and {zn} be a sequence in H. If for all z ∈ E,
limn→∞ ∥zn−z∥ exists and every sequential weak cluster point of {zn} is in E, then the sequence
{zn} converges weakly to a point in E.

Lemma 2.5. [27] Let {sk} ⊂ [0,∞), {tk} ⊂ (−∞,∞), and {uk} ⊂ (0, 1) satisfying
∑∞
n=1 uk =

∞ and sk+1 ≤ (1− uk)sk + uktk, k ∈ N. If lim supl→∞ tkl ≤ 0 and for every subsequence {kl}
of {k}, lim inf l→∞(skl+1 − skl) ≥ 0, then limk→∞ sk = 0.

Definition 2.1. [4] Let D be a nonempty closed convex subset of H and {Sm} be a se-
quence of nonexpnsive operators such that Sm : D → D for m ≥ 1. Suppose that for
every bounded sequence {tm} in D, limm→∞ ∥tm − Smtm∥ = 0 implies that every cluster
point of {tm} belongs to Ω := ∩∞

m=1F (Sm), then {Sm} is said to satisfy condition (Z).
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Definition 2.2. Let D be a nonempty closed convex subset of H. The projection from H
onto D, denoted by PD, is defined in such a way that, for every b ∈ H, PDb is the unique
point in D such that

∥b− PDb∥ = min{∥b− c∥ : c ∈ D}.
Lemma 2.6. Let D be a nonempty closed convex subset of H. Then

(2.4) ⟨b− PDb, c− PDb⟩ ≤ 0,

for all b ∈ H and c ∈ D.

3. MAIN RESULTS

3.1. Modified General Inertial Mann Algorithm for Nonexpansive Mappings. In this
section, we study the weak convergence of the Modified General Inertial Mann Algorithm
(MGIM, for short) for nonexpansive mappings under the conditions (E1) and (E2) stated
below.

Algorithm 1: Modified General Inertial Mann Algorithm (MGIM)
Initialization:Take t0, t1 ∈ H arbitrarily and the followig conditions hold:

(E1) {θn} ⊂ [0, θ], {ϕn} ⊂ [0, ϕ], and {γn} ⊂ [0, γ] are nondecreasing with θ1 = ϕ1 = γ1 =
0 and θ, ϕ, γ ∈ [0, 1) and {an}, {bn}, {cn} ⊂ [0, 1) such that an + bn + cn = 1;

(E2) for any c, ξ, λ > 0,

λ >
max{θ, ϕ} − min{θ, ϕ}+ max{θ, ϕ}[κ(1 + κ) + ξ]

1− ( max{θ, ϕ})2 ,

0 < c ≤ cn ≤min{θ, ϕ} − max{θ, ϕ}+ λ− max{θ, ϕ}[κ(1 + κ) + λ max{θ, ϕ}+ ξ]

λ[1 + κ(1 + κ) + λ max{θ, ϕ}+ ξ]
,

where κ = max {θ, ϕ, γ}.
Iterative Steps: Calculate tn+1 as follows:

(3.5)


wn = tn + θn(tn − tn−1)

yn = tn + ϕn(tn − tn−1)

zn = tn + γn(tn − tn−1)

tn+1 = anwn + bnyn + cnSzn,

Theorem 3.1. Let S : H → H be a nonexpansive mapping and assume that F (S) ̸= ∅. Then the
sequence {tn} generated by Algorithm 1 converges weakly to a point of F (S).

Proof. Pick f ∈ F (S).
From (3.5), it follows that

(3.6)

∥tn+1 − f∥2 =∥an(wn − f) + bn(yn − f) + cn(Szn − f)∥2

=an∥wn − f∥2 + bn∥yn − f∥2 + cn∥Szn − f∥2 − anbn∥wn − yn∥2−
ancn∥Szn − wn∥2 − bncn∥Szn − yn∥2

≤an∥wn − f∥2 + bn∥yn − f∥2 + cn∥zn − f∥2−
anbn(θn − ϕn)

2∥tn − tn−1∥2 − ancn∥Szn − wn∥2−
bncn∥Szn − yn∥2

Again using (3.5), we get

(3.7)
∥wn − f∥2 =∥(1 + θn)tn − θn(tn−1 − f)∥2

=(1 + θn)∥tn − f∥2 − θn∥tn−1 − f∥2 + θn(1 + θn)∥tn − tn−1∥2.
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Similarly, we have

(3.8) ∥yn − f∥2 = (1 + ϕn)∥tn − f∥2 − ϕn∥tn−1 − f∥2 + ϕn(1 + ϕn)∥tn − tn−1∥2

and

(3.9) ∥zn − f∥2 = (1 + γn)∥tn − f∥2 − γn∥tn−1 − f∥2 + γn(1 + γn)∥tn − tn−1∥2

Substituting (3.7), (3.8), and (3.9) into (3.6), we get

(3.10)

∥tn+1 − f∥2 − (1 + Ωn)∥tn − f∥2 +Ωn∥tn−1 − f∥2 ≤− ancn∥Szn − wn∥2−
bncn∥Szn − yn∥2+
(Ωn +Ψn)∥tn − tn−1∥2,

where Ωn = anθn + bnϕn + cnγn and Ψn = anθ
2
n + bnϕ

2
n + cnγ

2
n − anbn(θn − ϕn)

2.
From (E1), (E2), and κ = max{θ, ϕ, γ}, it follows that Ωn ⊂ [0, κ] is nondecreasing with
Ω1 = 0.
Again from (3.5), we get

(3.11)

∥Szn − yn∥2 =
∥∥∥ 1

cn

(
tn+1 − tn

)
+
dn
cn

(
tn−1 − tn

)∥∥∥2
=

1

c2n
∥tn+1 − tn∥2 +

d2n
c2n

∥tn−1 − tn∥2+

2
dn
c2n

⟨tn+1 − tn, tn−1 − tn⟩

≥ 1

c2n
∥tn+1 − tn∥2 +

d2n
c2n

∥tn−1 − tn∥2+

dn
c2n

(
−νn∥tn+1 − tn∥2 −

1

νn
∥tn−1 − tn∥2

)
,

and

(3.12)

∥Szn − wn∥2 =
∥∥∥ 1

cn

(
tn+1 − tn

)
+
en
cn

(
tn−1 − tn

)∥∥∥2
≥ 1

c2n
∥tn+1 − tn∥2 +

e2n
ψ2
n

∥tn−1 − tn∥2+

en
c2n

(
−νn∥tn+1 − tn∥2 −

1

νn
∥tn−1 − tn∥2

)
,

where dn = an(θn − ϕn) + ϕn, en = bn(ϕn − θn) + θn, and νn =
1

min{dn, en}+ λcn
.

Now, substituting (3.11) and (3.12) into (3.10), we get

(3.13)
∥tn+1 − f∥2 − (1 + Ωn)∥tn − f∥2 +Ωn∥tn−1 − f∥2 ≤ζn∥tn−1 − tn∥2+

ηn
cn

∥tn+1 − tn∥2,

where

ζn = Ωn +Ψn +
bndn(1− νndn)

νncn
+
anen(1− νnen)

νncn
≥ 0

and
ηn = an(νnen − 1) + bn(νndn − 1).

Considering two cases for min{dn, en}, we can verify that for all n ≥ 1

(3.14) ζn ≤ Ωn +Ψn + max{dn, en}(1− cn)λ,
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where λ =
1− νnmin{dn, en}

νncn
.

Similarly, we can show that ηn ≤ 0 for all n ≥ 1 by taking into account the condition for
λ.
Let

ζ ′n := Ωn +Ψn + max{dn, en}(1− cn)λ.

In view of (3.14), (3.13) becomes

(3.15)
∥tn+1 − f∥2 − (1 + Ωn)∥tn − f∥2 +Ωn∥tn−1 − f∥2 ≤ζ ′n∥tn − tn−1∥2+

ηn
cn

∥tn+1 − tn∥2.

Moreover, we have

(3.16) ζ ′n ≤ κ(1 + κ) + λ max{θ, ϕ}.

Next, we show that
∞∑
n=1

∥tn+1 − tn∥2 <∞,

by adapting some techniques from [1, 7]. To do so, first, we let σn = ∥tn − f∥2 and
τn := σn − Ωnσn−1 + ζ ′n∥tn − tn−1∥2, for all n ≥ 1.
Now, using the fact that {Ωn} is monotone and σn ≥ 0 for all n ∈ N, we obtain

(3.17) τn+1 − τn = σn+1 − (1 + Ωn)σn +Ωnσn−1 + ζ ′n+1∥tn+1 − tn∥2 − ζ ′n∥tn − tn−1∥2.

By (3.15), we have

(3.18) σn+1 − (1 + Ωn)σn +Ωnσn−1 − ζ ′n∥tn − tn−1∥2 ≤ ηn
cn

∥tn+1 − tn∥2.

Combining (3.17) and (3.18), we get

(3.19) τn+1 − τn ≤
(
ηn
cn

+ ζ ′n+1

)
∥tn+1 − tn∥2.

Now, we claim that

(3.20)
ηn
cn

+ ζ ′n+1 ≤ −ξ,

for each n ∈ N.
After some manipulations, the bove claim is the same as:

max{θ, ϕ} − min{θ, ϕ} − λ+ max{θ, ϕ}(ζ ′n+1 + ξ) + λcn(1 + ζ ′n+1 + ξ) ≤ 0.

This claim can be verified easily by using the upper bounds of ζ ′n+1 and cn.
Now, (3.19) becomes

(3.21) τn+1 − τn ≤ −ξ∥tn+1 − tn∥2.

Taking in to account that {τn}n≥1 is nonincreasing and Ωn ∈ [0, κ], we get

(3.22) −κσn−1 ≤ σn − κσn−1 ≤ τn ≤ τ1,

for each n ≥ 1.
From (3.22), we get

(3.23) σn ≤ κnσ0 + τ1

n−1∑
m=1

κm ≤ κnσ0 +
τ1

1− κ
,
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for each n ≥ 1.
Now, using (3.21), (3.22),and (3.23), we get

(3.24) ξ

∞∑
k=1

∥tn+1 − tn∥2 ≤ τ1 − τn+1 ≤ τ1 + κσn ≤ κn+1σ0 +
κτ1
1− κ

,

which implies

(3.25)
∞∑
k=1

∥tn+1 − tn∥2 <∞.

Thus, we have

(3.26) lim
n→∞

∥tn+1 − tn∥ = 0.

From (3.5) and (3.26), we see that

∥yn − tn+1∥ ≤ ∥tn − tn+1∥+ θn∥tn − tn−1∥,
which in turn implies that

(3.27) lim
n→∞

∥yn − tn+1∥ = 0.

Similarly, we have

(3.28) lim
n→∞

∥zn − tn+1∥ = 0

and

(3.29) lim
n→∞

∥wn − tn+1∥ = 0.

Now, using (3.5), (3.26) and (3.27), we get

(3.30)
∥Szn − yn∥ ≤an|θn − γn|

cn
∥tn − tn−1∥+

1

cn
∥tn+1 − yn∥

≤1

c
(∥tn − tn−1∥+ ∥tn+1 − yn∥) ,

which implies that

(3.31) lim
n→∞

∥Szn − yn∥ = 0.

Using (3.5), (3.26) and (3.31), we get

(3.32) ∥Szn − zn∥ ≤ ∥Szn − yn∥+ ∥yn − zn∥ ≤ ∥Szn − yn∥+ |ϕn − γn|∥tn − tn−1∥,
which implies that

(3.33) lim
n→∞

∥Szn − zn∥ = 0.

Using (3.15), (3.16), and (3.25), we can see that all the conditions of Lemma 2.2 are satisfied.
Hence lim

n→∞
∥tn − f∥ exists for an arbitrary f ∈ F (S) which implies that {tn} is bounded.

Now, let t be a sequential weak cluster point of {tn}. It follows that {tn} has a subsequence
{tnk

} such that tnk
⇀ t as k → ∞. Since lim

n→∞
∥zn − tn∥ = 0, it follows that znk

⇀ t as

k → ∞. This together with (3.33) and Lemma 2.3 show that t ∈ F (S). We can see that all
the conditions of Lemma 2.4 are satisfied. Therefore, the sequence {tn} converges weakly
to a point in F (S). □

Remark:
(1) If we put θn = ϕn, then MGIM algorithm becomes general inertial Mann algo-

rithm [14].
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(2) If we put θn = ϕn = 0, then MGIM algorithm becomes Reflected Mann Algorithm
[14].

(3) If we put θn = ϕn = γn, then Theorem 3.1 becomes Theorem 5 of Bot et al. [8].
(4) If we put θn = ϕn and γn = 0, then MGIM algorithm becomes accelerated Mann

algorithm [13].
(5) If we put γn = 0 in Theorem 3.1, then we get a new algorithm which we call it

General Accelerated Mann Algorithm. It is formulated as follows:

(3.34)


wn = tn + θn(tn − tn−1)

yn = tn + ϕn(tn − tn−1)

tn+1 = anwn + bnyn + cnStn,

3.2. General Inertial Viscosity Algorithm for Nonexpansive Mappings. Now, we present
a viscosity method for solving a common fixed point of a countable family of nonex-
pansive operators in real Hilbert spaces which we call it General Inertial Mann Viscosity
(GIMV, for short) algorithm. Let v : H → H be a η-contraction mapping where η ∈ [0, 1)
and {Sk} be a sequence of nonexpansive mappings Sk : H → H for k ≥ 1.
We take the following assumptions to prove the strong convergence of the sequence gen-
erated by GIMV algorithm:

(1) {Sk} satisfies condition (Z) (See Definition 2.1).
(2) Γ := ∩∞

k=1F (Sk) ̸= ∅.

Algorithm 3: General Inertial Mann Viscosity Algorithm (GIMV)
Initialization:Take t0, t1 ∈ H arbitrarily and positive sequences {αk}, {βk}, {λk}, {γk} which
satisfy the following conditions:

{αk}, {βk}, {λk}, {γk} ⊂ (0, 1),

lim
k→∞

γk = 0, and
∞∑

k=1

γk = ∞.

Step 1: Choose {µk}, {θk} ⊂ [0,∞) and bounded.
For k ≥ 1, set

αk =

min
{
µk,

τk
∥tk − tk−1∥

}
if tk ̸= tk−1,

µk otherwise,

βk =

min
{
θk,

ζk
∥tk − tk−1∥

}
if tk ̸= tk−1,

θk otherwise,

where {τk}, {ζk} ⊂ (0,∞); limk→∞
τk
γk

= 0, and limk→∞
ζk
γk

= 0

Step 2: Compute tk+1.

(3.35)


yk = tk + αk(tk − tk−1)

zk = tk + βk(tk − tk−1)

wk = (1− λk)yk + λkSkzk,

tk+1 = γkv(wk) + (1− γk)Skzk

Update k = k + 1 and return to Step 1.

Theorem 3.2. The sequence {tk} generated by Algorithm 3 converges strongly to an element
f ∈ Γ, where f = PΓv(f).



282 Solomon Gebregiorgis, Poom Kumam, and Thidaporn Seangwattana

Proof. Pick f ∈ Γ.
By using (3.35), we have

(3.36)

∥tk+1 − f∥ =∥γk(v(wk)− f) + (1− γk)(Skzk − f)∥
≤γk∥v(wk)− f∥+ (1− γk)∥Skzk − f∥
≤γk∥v(wk)− v(f)∥+ γk∥v(f)− f∥+ (1− γk)∥zk − f∥
≤ηγk∥wk − f∥+ γk∥v(f)− f∥+ (1− γk)∥zk − f∥
=ηγk∥(1− λk)(yk − f) + λk(Skzk − f)∥+ γk∥v(f)− f∥+
(1− γk)∥zk − f∥

≤ηγk(1− λk)∥yk − f∥+ ηγkλk∥zk − f∥+ γk∥v(f)− f∥+
(1− γk)∥zk − f∥

=ηγk(1− λk)∥yk − f∥+ [ηγkλk + 1− γk]∥zk − f∥+ γk∥v(f)− f∥.

Again from (3.35), we have

(3.37) ∥yk − f∥ ≤ ∥tk − f∥+ αk∥tk − tk−1∥

and

(3.38) ∥zk − f∥ ≤ ∥tk − f∥+ βk∥tk − tk−1∥.

Substituting (3.37) and (3.38) into (3.36), we get

(3.39) ∥tk+1−f∥ ≤ [1−(1−η)γk]∥tk−f∥+γk
[
αk
γk

∥tk−tk−1∥+
βk
γk

∥tk−tk−1∥+∥v(f)−f∥
]
.

By the conditions of αk and βk, we have limk→∞
αk

γk
∥tk−tk−1∥ = 0 and limk→∞

βk

γk
∥tk−

tk−1∥ = 0, respectively. Hence, we can find constants M , N ≥ 0 such that

αk
γk

∥tk − tk−1∥ ≤M and
βk
γk

∥tk − tk−1∥ ≤ N,

for all k ≥ 1.
Now, (3.39) becomes

∥tk+1 − f∥ ≤[1− (1− η)γk]∥tk − f∥+ γk
[
M +N + ∥v(f)− f∥

]
=[1− (1− η)γk]∥tk − f∥+ γk(1− η)

[
M +N + ∥v(f)− f∥

1− η

]
.

Proceeding inductively, we arrive at

∥tk+1 − f∥ ≤ max
{
∥t1 − f∥, M +N + ∥v(f)− f∥

1− η

}
,

for all k ≥ 1 which proves the boundness of {tk}. The boundness of {tk} again implies
that {yk}, {zk}, {Skzk}, {wk}, and v(wk) are all bounded.
From (3.35), we get

(3.40)

∥wk − f∥2 =∥(1− λk)(yk − f) + λk(Skzk − f)∥2

=(1− λk)∥yk − f∥2 + λk∥Skzk − f∥2 − λk(1− λk)∥Skzk − yk|∥2

≤(1− λk)∥yk − f∥2 + λk∥zk − f∥2 − λk(1− λk)∥Skzk − yk∥2,
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and

(3.41)

∥tk+1 − f∥2 =∥γk(v(wk)− f) + (1− γk)(Skzk − f)∥2

=∥γk(v(wk)− v(f) + v(f)− f) + (1− γk)(Skzk − f)∥2

=∥[γk(v(wk)− v(f)) + (1− γk)(Skzk − f)] + γk(v(f)− f)∥2

≤∥γk(v(wk)− v(f)) + (1− γk)(Skzk − f)∥2+
2γk⟨v(f)− f, tk+1 − f⟩

≤γk∥v(wk)− v(f)∥2 + (1− γk)∥Skzk − f)∥2+
2γk⟨v(f)− f, tk+1 − f⟩

≤ηγk∥wk − f∥2 + (1− γk)∥zk − f)∥2+
2γk⟨v(f)− f, tk+1 − f⟩.

Substituting (3.40) into (3.41), we get

(3.42)
∥tk+1 − f∥2 ≤ηγk(1− λk)∥yk − f∥2 + (ηγkλk + 1− γk)∥zk − f∥2−

ηγkλk(1− λk)∥Skzk − yk∥2 + 2γk⟨v(f)− f, tk+1 − f⟩.

From (3.35), we get

(3.43)

∥yk − f∥2 =∥(tk − f) + αk(tk − tk−1)∥2

=∥tk − f∥2 + α2
k∥tk − tk−1∥2 + 2αk⟨tk − f, tk − tk−1⟩

≤∥tk − f∥2 + α2
k∥tk − tk−1∥2 + 2αk∥tk − f∥∥tk − tk−1∥.

Similarly,

(3.44) ∥zk − f∥2 ≤∥tk − f∥2 + β2
k∥tk − tk−1∥2 + 2βk∥tk − f∥∥tk − tk−1∥.

Substituting (3.43) and (3.44) into (3.42), we get

(3.45)

∥tk+1 − f∥2 ≤[1− (1− η)γk]∥tk − f∥2 + γk

[(
αk
γk

∥tk − tk−1∥
)2

+(
βk
γk

∥tk − tk−1∥
)2

+ 2∥tk − f∥
(
αk
γk

∥tk − tk−1∥
)
+

2∥tk − f∥
(
βk
γk

∥tk − tk−1∥
)
+ 2⟨v(f)− f, tk+1 − f⟩

]
−

ηγkλk(1− λk)∥Skzk − yk∥2,

which implies

(3.46) ηγkλk(1− λk)∥Skzk − yk∥2 ≤ ∥tk − f∥2 − ∥tk+1 − f∥2 + γkM1,

where

M1 =sup
k≥1

{(
αk
γk

∥tk − tk−1∥
)2

+

(
βk
γk

∥tk − tk−1∥
)2

+ 2∥tk − f∥
(
αk
γk

∥tk − tk−1∥
)
+

2∥tk − f∥
(
βk
γk

∥tk − tk−1∥
)
+ 2⟨v(f)− f, tk+1 − f⟩

}
.

Next, we prove the strong convergence of {tk} to f .
Suppose ak := ∥tk − f∥2 has a subsequence {aki} such that lim infi→∞(aki+1 − aki) ≥ 0.
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Using (3.46) and applying the conditions of {γk} and {λk}, we obtain

lim sup
i→∞

ηγkiλki(1− λki)∥Skizki − yki∥2 ≤ lim sup
i→∞

(aki − aki+1 + γkiM1)

≤ lim sup
i→∞

(aki − aki+1) + lim sup
i→∞

γkiM1

≤0.

This implies that:

(3.47) lim
i→∞

∥Skizki − yki∥ = 0.

Now, we are in a position to prove that lim supi→∞⟨v(f)− f, tki+1 − f⟩ ≤ 0.
Choose a subsequence {tkij } of {tki} such that

lim sup
i→∞

⟨v(f)− f, tki − f⟩ = lim
j→∞

⟨v(f)− f, tkij − f⟩.

The boundness of
{
tkij

}
guarantees the existence of a subsequence

{
tkijp

}
of tkij such

that tkijp ⇀ u ∈ H. With out loss of generality, we may assume that tkij ⇀ u ∈ H. Since
by assumption condition (Z) is satisfied by {Sk}, it follows that u ∈ Γ. As limi→∞ ∥tki+1−
tki∥ = 0 and f = PΓv(f), and using (2.4), we obtain

(3.48) lim sup
i→∞

⟨v(f)− f, tki − f⟩ = ⟨v(f)− f, u− f⟩ ≤ 0.

Combining (3.45) and (3.48), and using the hypothesis of Theorem 3.2 that is limk→∞
αk
γk

∥tk−

tk−1∥ = 0, limk→∞
βk
γk

∥tk−tk−1∥ = 0, and
∑∞
k=0 γk = ∞,we can see that all the conditions

of Lemma 2.5 are satisfied. Hence limk→∞ ∥tk− f∥ = 0; that is, {tk} converges strongly to
f = PΓv(f). □

4. APPLICATIONS

4.1. Constrained Convex Minimization Problem. Let D be a nonempty closed convex
subset of H and g : D → R be a real valued convex function. Then the constrained convex
minimization problem:

(4.49) min
t∈D

g(t),

where g is a differentiable function can be expressed as a fixed point problem as follows:

(4.50) t = PD(t− β∇g(t)),
where β > 0.
From (4.50), we can formulate the gradient-projection algorithm as:

(4.51) tn+1 = PD
(
I − β∇g

)
(tn).

It is proved that the composite PD(I − β∇) is ((2 + β)/4)-averaged for 0 < β < 2/L if ∇g
is L-Lipschitz continuous [35]. So, the operator PD(I − β∇) is nonexpansive.
Setting S = PD(I−β∇) in Algorithm 1, we come up with a new algorithm for (4.49) which
we call it Modified General Inertial Gradient Projection (MGIGP, for short) algorithm. It
is shown in Algorithm 4.
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Algorithm 4: Modified General Inertial Gradient Projection Algorithm (MGIGP)
Initialization:Take t0, t1 ∈ H arbitrarily, and (E1) and (E2) hold.
Iterative Step: Calculate tk+1 via the manner

(4.52)


wn = tn + γn(tn − tn−1)

yn = tn + ϕn(tn − tn−1)

zn = tn + θn(tn − tn−1)

tn+1 = anwn + bnyn + cnPD(zn − β∇g(zn)),

Theorem 4.3. Assume that problem (4.49) is consistent, ∇g is L-Lipschitz continuous, and the
number β ∈ (0, 2/L). Then the sequence {tn} generated by Algorithm 4 converges weakly to a
minimizer of problem (4.49).

4.2. The Douglas-Rachford Splitting Method. Let γ be a fixed parameter, and A and B
be maximal monotone operators. The resolvents of A and B are defined as:

JAγ := (I + γA)−1 and JBγ := (I + γB)−1,

respectively, which are firmly nonexpansive. The corresponding reflection operators are
also defined as follows:

RAγ := 2JAγ − I and RBγ := 2JBγ − I,

which are nonexpansive operators.
We know that 0 ∈ Tx for T = A+B if and only if x = JBγ (t), where t = RAγ R

B
γ t. To find a

zero of T = A+B, we can apply the Mann iteration to RAγ RBγ .
As a result,we obtain the following iteration:

(4.53) tn+1 := (1− λn)tn + λnR
A
γ R

B
γ tn,

for n ≥ 1, see [5] for more details. This algorithm provides us with the approximation of
the orginal variable by setting xn := JBγ tn.
Using (4.53) and the definitions of reflection operators, we get

(4.54) tn+1 := tn + 2λn
(
JAγ (2J

B
γ tn − tn)− JBγ tn

)
.

Now, we are in a position to introduce our algorithm which we call it Modified General
Inertial Douglas-Rachford Splitting (MGIDRS, for short) algorithm which is formulated
as follows.

Algorithm 5: Modified General Inertial Douglas-Rachford Splitting Algorithm
(MGIDRS)
Initialization:Take t0, t1 ∈ H arbitrarily, and (E1) and (E2) hold.
Iterative Step: Calculate tn+1 via the manner

(4.55)


wn = tn + θn(tn − tn−1)

yn = tn + ϕn(tn − tn−1)

zn = tn + γn(tn − tn−1)

tn+1 = anwn + bnyn + 2cn
(
JAγ (2J

B
γ tn − zn)

)
− 2cnJ

B
γ tn + cnzn,
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Theorem 4.4. The sequence {tn} generated by Algorithm 5 converges weakly to an element t ∈ H
such that JBγ t ∈ (A+B)−1(0), that is, x := JBγ t is a solution of the monotone inclusion problem
for the operator T := A+B.

4.3. Nonsmooth Convex Optimization Model. Finally, we apply Algorithm 3 for solving
the nonsmooth convex optimization problem which has the following form:

(4.56) min
t∈H

ψ1(t) + ψ2(t),

where ψ1(t) : H → R is smooth and convex with a Lipschitz continuous gradient constant
L > 0 and ψ2(t) : H → R ∪ {∞} is a proper convex and lower-semicontinuous function.
The solution set of problem (4.56) is given by Ω := Argmin(ψ1 + ψ2).
Furthermore, t is a solution of (4.56) if it satisfies the following fixed point equation.

(4.57) t = proxcψ2
(I − c∇ψ1)(t),

where c > 0, proxψ2
= (I + ∂ψ2)

−1, and ∂ψ2 is the subdifferential of ψ2 (see [5] for more
details).
For solving (4.56), we can use the forward-backward splitting algorithm [20] which takes
the following form:

(4.58) tk+1 = proxckψ2︸ ︷︷ ︸
backward step

(I − ck∇ψ1)(tk)︸ ︷︷ ︸
forward step

,

k ∈ N where t1 ∈ H and 0 < ck < 2/L.
Now, we can apply Algorithm 3 for solving the nonsmooth convex optimization problem
(4.56) by assuming Ω := Argmin(ψ1 + ψ2) ̸= ∅ and setting Sk = proxckψ2

(I − ck∇ψ1)

which is a nonexpansive mapping where ck ∈ (0, 2/L). As a result, we come up with
a new algorithm which we call it General Inertial Viscosity Forward-Backward Splitting
(GIVFBS, for short) algorithm.

Algorithm 6: General Inertial Viscosity Forward-Backward Splitting (GIVFBS) Al-
gorithm
Initialization:We follow the same initialization process as Algorithm 3.
Step 1: The same as Algorithm 3.
Step 2: Compute tk+1 via the manner:

(4.59)


yk = tk + αk(tk − tk−1)

zk = tk + βk(tk − tk−1)

wk = (1− λk)yk + λkproxckψ2
(1− ck∇ψ1)zk

tk+1 = γkv(wk) + (1− γk)proxckψ2
(1− ck∇ψ1)zk

Update k = k + 1 and return to Step 1.

Theorem 4.5. The sequence generated by Algorithm 6 converges strongly to an element f ∈ Ω,
where f = pΩv(f).

4.4. Image Restoration problem. The general image restoration problem can be formu-
lated by the inversion of the observation model given by

(4.60) y = Ax+ ϵ,

where x is the original image, y is the observed image, and ϵ is the additive noise. The
kernel function A models the blurring operation.
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A regularization method should be used in the image restoration process. The notion
of regularization method has the goal of constraining, in the solution, the effect of the
growth of the error coming from the data, by means of modifying the problem condition.
The ℓ1 regularization can remove noise in the restoration process and it is the problem of
finding

(4.61) min
y

1

2
∥Ax− y∥22 + µ∥x∥1,

where ∥.∥2 is the ℓ2-norm, µ is a positive regularization parameter which measures the
trade-off between a good fit and a regularized solution, and ∥.∥1 is the ℓ1-norm. Finding
the solutions of (4.60) can be seen as finding a solution to the least-square problem (4.61).

We apply Algorithm 6 (GIVFBS) for solving an image restoration problem (4.60) and
compare the performance of our method in restoring blurred images with FBS [20] al-
gorithm with 500 iterations. For comparison, we consider the standard test images of
Butterfly (256× 256) and Camera Man (512× 512) (see Figure 1 ).

(A) Butterfly (B) Cameraman

FIGURE 1. Original test images: (A) Butterfly and (B) Cameraman

To measure the quality of recovered images, we calculate the improved signal-to-noise
ratio (ISNR) and structural similarity index measure (SSIM). For the control parameters,
we take τk = ζk = 1015

k2 , µk = 9.5k
6k+1 , θk = 9.5k

10k+1 , λk = 0.95, γk = 10−4

6k , and ck = 0.05.
Moreover, the contraction mapping is defined by v(x) = 0.95x. Now, by taking ψ1(x) =
∥Ax − y∥22 and ψ2(x) = µ∥x∥1, we can solve image restoration problems using our algo-
rithm (GIVFBS) and the FBS algorithm.
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(A) Blurred (B) GIVFBS (C) FBS

(A) Blurred (B) GIVFBS (C) FBS

FIGURE 3. Degraded and restored Butterfly images.

(A) Blurred (B) GIVFBS (C) FBS

(A) Blurred (B) GIVFBS (C) FBS

FIGURE 5. Degraded and restored Cameraman images.

It can be seen from Figure 3 and Figure 5 that the recovered images by GIVFBS algo-
rithm are better than that of FBS algorithm.
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TABLE 1. ISNR and SSIM values for Butterfly and Cameraman images
using GIVFBS and FBS algorithms

GIVFBS FBS
Images ISNR SSIM ISNR SSIM
Butterfly 9.009122 0.999997 3.309512 0.999989
Cameraman 9.202300 0.999994 4.103025 0.999983

(A) Butterfly (B) Cameraman

FIGURE 6. Comparisons of SNR values for (A) Butterfly and (B) Camera-
man images using GIVFBS and FBS algorithms

We can observe from Figure 6 and Table 1 that GIVFBS algorithm has higher SNR,
ISNR, and SSIM values which shows that the quality of the images recovered by GIVFBS
algorithm is better than that of FBS algorithm.

5. CONCLUSIONS

We introduce the modified general inertial Mann algorithm for finding the fixed point
of nonexpansive mappings and prove weak convergence of the sequence generated by
this algorithm. This new algorithm generalizes the algorithm which was developed by
Dong et al. [14]. Moreover, we introduce the general inertial viscosity algorithm and
prove strong convergence of the sequence generated by this algorithm to a common fixed
point of a countable family of nonexpansive operators. Finally, we show an applications
of Algorithm 6 to solve image restoration problem and the numerical results show that
the proposed algorithm outperforms that of FBS algorithm in recovering the original im-
age (See Figure 6 and Fable 1).
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