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Modified inertial extragradient algorithm with
non-monotonic step sizes for pseudomonotone equilibrium
problems and quasi-nonexpansive mapping

THANYALUCK NGAMKHUM, KOMKIND PUNPENG and MANATCHANOK
KHONCHALIEW

ABSTRACT. In this paper, we introduce a modified inertial extragradient algorithm with non-monotonic step
sizes for approximating a common solution of the pseudomonotone equilibrium problem and the fixed point
problem for the quasi-nonexpansive mapping in the framework of a real Hilbert space. Under some constraint
qualifications of the scalar sequences, the strong convergence theorem of the introduced algorithm is presented
by using the self-adaptive non-monotonic step size without prior information about the Lipschitz constants of
bifunction. Some numerical experiments are provided to demonstrate the computational efficiency and advan-
tages of the proposed algorithm.

1. INTRODUCTION

The equilibrium and fixed point problems have a wide range of applications in many
mathematical models in the sense that they bring together different mathematical prob-
lems, such as optimization problems, variational inequality problems, minimax problems,
Nash equilibrium problems, and saddle point problems, see [5, 17, 18, 24, 27, 30], and the
references therein. For a real Hilbert space H and a mapping T : H → H , the fixed point
problem is a problem of finding a point x ∈ H such that Tx = x. The set of fixed points
of the mapping T is represented by F (T ).

The majority of methods for finding fixed points of a nonexpansive mapping T : C →
C are derived from the basic Mann iteration as follows:

(1.1)

{
x0 ∈ C,

xk+1 = (1− αk)xk + αkTxk,

where C is a nonempty closed convex subset of H and the sequence {αk} must meet
certain conditions. In [26], the authors showed that if T is a quasi-nonexpansive mapping
with I − T demiclosed at zero, then the sequence generated by Algorithm 1.1 converges
weakly to a fixed point of T .

Furthermore, Ishikawa [19] proposed the following algorithm for finding fixed points
of a Lipschitz pseudocontractive mapping T :

(1.2)


x0 ∈ C,

yk = (1− αk)xk + αkTxk,

xk+1 = (1− βk)xk + βkTyk,
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where 0 ≤ βk ≤ αk ≤ 1 such that
∞∑
k=0

αkβk = ∞ and lim
k→∞

αk = 0. In [19], the au-

thor proved that if C is a convex compact subset of H , then the sequence {xk} generated
by Algorithm 1.2 converges strongly to fixed points of T . It was emphasized that Mann
iteration may not, in general, be applied for finding fixed points of a Lipschitz pseudo-
contractive mapping in a Hilbert space, for instance, see [9].

On the other hand, the equilibrium problem is a problem of finding a point x∗ ∈ C
such that

(1.3) f(x∗, y) ≥ 0,∀y ∈ C,

where C is a nonempty closed convex subset of a real Hilbert spaceH , and f : H×H → R
is a bifunction. The solution set of the equilibrium problem (1.3) is denoted by EP (f, C).
One of the most popular methods for solving the equilibrium problem (1.3), when f is a
monotone bifunction, is the proximal point method, see [10]. However, the proximal point
method may not be guaranteed for a weaker assumption, such as a pseudomonotone, see
[15]. To overcome this drawback, Tran et al. [36] proposed the following extragradient
method for solving the equilibrium problem when the bifunction f is pseudomonotone
and satisfies Lipschitz-type continuous with positive constants c1 and c2:

(1.4)


x0 ∈ C,

yk = argmin
{
λf(xk, y) +

1
2∥y − xk∥2 : y ∈ C

}
,

xk+1 = argmin
{
λf(yk, y) +

1
2∥y − xk∥2 : y ∈ C

}
,

where 0 < λ < min
{

1
2c1
, 1
2c2

}
. They proved that the sequence {xk} generated by Algo-

rithm 1.4 converges weakly to a solution of the equilibrium problem (1.3).
Meanwhile, as one of the acceleration approaches, the inertial-type methods based on

discrete versions of a second-order dissipative dynamic system [1, 2] have gained a lot of
attention from researchers for solving equilibrium problems, for instance, see [14, 37] and
the references therein. Indeed, this method is characterized that the next iteration is deter-
mined by the combination of the previous two (or more) iterations and can be regarded as
a method of speeding up the convergence properties under some suitable conditions, see,
e.g., [33, 34] and related references. By using the techniques of inertial and extragradient
methods, Rehman et al. [29] proposed the following algorithm for solving the equilibrium
problem when the bifunction f is pseudomonotone and satisfies Lipschitz-type continu-
ous with positive constants c1 and c2:

(1.5)



x0, x1 ∈ H,

wk = xk + θk(xk − xk−1),

yk = argmin
{
λkf(wk, y) +

1
2
∥y − wk∥2 : y ∈ C

}
,

xk+1 = argmin
{
σλkf(yk, y) +

1
2
∥y − wk∥2 : y ∈ C

}
,

λk+1 = min

{
ζ,

σf(yk, xk+1)

f(wk, xk+1)− f(wk, yk)− c1∥wk − yk∥2 − c2∥xk+1 − yk∥2 + 1

}
,

where λ1 > 0, 0 < ζ < min
{

1−3θ
(1−θ)2 ,

1
2c1
, 1
2c2

}
, σ ∈ (0, ζ), and 0 ≤ θk ≤ θ < 1

3 . They proved
that the sequence {xk} generated by Algorithm 1.5 converges weakly to a solution of the
equilibrium problem (1.3). It is important to note that the aforementioned algorithms
used step sizes that are dependent on the Lipschitz constants of the bifunction f . This can
lead to some limitations in practical applications because the Lipschitz constants of the
bifunction are usually unknown or complicated to estimate. Therefore, it is valuable to
develop adaptive step sizes that do not require the Lipschitz constants of the bifunction
f .
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In 2023, Husain and Asad [16] proposed the following algorithm by using the extragra-
dient method for solving the equilibrium and fixed point problems when the bifunction f
is pseudomonotone and satisfies Lipschitz-type continuous and the mapping T : C → H
is ψ-strongly quasi-nonexpansive with I − T demiclosed at zero:

(1.6)



x0 ∈ C,

yk = argmin
{
f(xk, y) +

1
2λk

∥y − xk∥2 : y ∈ C
}
,

zk = argmin
{
f(yk, y) +

1
2λk

∥y − xk∥2 : y ∈ C
}
,

xk+1 = αkh(xk) + (1− αk)Tzk,

λk+1 = min

{
λk,

µ(∥xk − yk∥2 + ∥zk − yk∥2)
2max{0, f(xk, zk)− f(xk, yk)− f(yk, zk)}

}
,

where λ0 > 0, µ ∈ (0, 1), {αk} ⊂ (0, 1) such that
∞∑
k=0

αk = ∞, lim
k→∞

αk = 0, and h : H → H

is a contraction mapping. They proved that the sequence {xk} generated by Algorithm
1.6 converges strongly to p = PEP (f,C)∩F (T )h(p). It is worth noting that Algorithm 1.6
used the adaptive step size to deal with the unknown prior information of the Lipschitz
constants of the bifunction f . However, this considered step size is a non-increasing se-
quence, which will further affect the computational efficiency of Algorithm 1.6.

In this paper, we focus on the algorithm for solving the equilibrium and fixed point
problems. That is, we introduce a new iterative algorithm for finding the common solu-
tion of the pseudomonotone equilibrium problem and the fixed point of quasi-nonexpansive
mapping by using the self-adaptive non-monotonic step size. Some numerical examples
demonstrate the computational behavior of the proposed algorithm and compare it to
some related algorithms in the literature.

This paper is organized as follows: In Section 2, some necessary definitions and prop-
erties are reviewed for further use. Section 3 presents the modified inertial extragradient
algorithm with non-monotonic step size and proves the strong convergence theorem. In
Section 4, the performance of the introduced algorithm is discussed by comparing it with
other existing algorithms.

2. PRELIMINARIES

In this section, we collect some basic definitions and important properties that are used
in this paper. The notation R and N will stand for the set of the real numbers and the
natural numbers, respectively. Let H be a real Hilbert space with inner product ⟨· , · ⟩, and
its corresponding norm ∥·∥. The symbols → and⇀ are denoted for the strong convergence
and the weak convergence in H , respectively.

First, we recall some definitions and results which are related to nonlinear mappings.

Definition 2.1. [7] A mapping T : H → H is said to be:
i) pseudocontractive if

∥Tx− Ty∥2 ≤ ∥x− y∥2 + ∥(I − T )x− (I − T )y∥2,∀x, y ∈ H,

where I denotes the identity operator on H .
ii) Lipschitzian if there exists L ≥ 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥,∀x, y ∈ H.

In particular, if L = 1, then T is said to be nonexpansive.
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iii) ψ-strongly quasi-nonexpansive with ψ ≥ 0 if F (T ) is a nonempty set and

∥Tx− p∥2 ≤ ∥x− p∥2 − ψ∥x− Tx∥2,∀x ∈ H, p ∈ F (T ).

iv) quasi-nonexpansive if F (T ) is a nonempty set and

∥Tx− p∥ ≤ ∥x− p∥,∀x ∈ H, p ∈ F (T ).

Remark 2.1. It is well-known thatF (T ) is closed and convex when T is a quasi-nonexpansive
mapping, see [20].

Definition 2.2. [6] Let C be a nonempty closed convex subset of H . A mapping T : C →
H is said to be demiclosed at y ∈ H if for any sequence {xk} ⊂ C with xk ⇀ x∗ ∈ C and
Txk → y imply Tx∗ = y.

Now, we recall the concerned definitions of the equilibrium problems.

Definition 2.3. [5, 23, 24] Let C be a nonempty closed convex subset of H . A bifunction
f : H ×H → R is said to be:

i) monotone on C if
f(x, y) + f(y, x) ≤ 0, ∀x, y ∈ C;

ii) pseudomonotone on C if
f(x, y) ≥ 0 ⇒ f(y, x) ≤ 0, ∀x, y ∈ C;

iii) Lipshitz-type continuous onH if there exists two positive constants c1 and c2 such
that

(2.7) f(x, y) + f(y, z) ≥ f(x, z)− c1∥x− y∥2 − c2∥y − z∥2,∀x, y, z ∈ H.

Remark 2.2. A monotone bifunction is a pseudomonotone bifunction, but the converse is
not true in general, for instance, see [21].

Next, we recall some basic facts in the functional analysis which are referred to in the
sequel. For each x ∈ H , we denote the metric projection of x onto a nonempty closed
convex subset C of H by PC(x), that is

∥x− PC(x)∥ ≤ ∥y − x∥,∀y ∈ C.

Lemma 2.1. [8, 13] Let C be a nonempty closed convex subset of H . Then,
i) PC(x) is singleton and well-defined, for each x ∈ H ;

ii) z = PC(x) if and only if ⟨x− z, y − z⟩ ≤ 0, ∀y ∈ C.

For a function g : H → R, the subdifferential of g at z ∈ H is defined by
∂g(z) = {w ∈ H : g(y)− g(z) ≥ ⟨w, y − z⟩,∀y ∈ H}.

The function g is said to be subdifferentiable at z if ∂g(z) ̸= ∅.

Lemma 2.2. [8] For any z ∈ H , the subdifferential ∂g(z) of a continuous convex function g is a
weakly closed and bounded convex set.

Lemma 2.3. [12] Let C be a convex subset of H and f : C → R be subdifferentiable on C. Then,
x∗ is a solution to the following convex problem:

min {f(x) : x ∈ C}
if and only if 0 ∈ ∂f(x∗) +NC(x

∗), where NC(x
∗) := {y ∈ H : ⟨y, z − x∗⟩ ≤ 0,∀z ∈ C} is

the normal cone of C at x∗.

We end this section by recalling some auxiliary lemmas for proving the convergence
theorems.
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Lemma 2.4. [25] Let {ak}, {bk} and {ck} be sequences of non-negative real numbers such that

ak+1 ≤ akbk + ck,∀k ∈ N. If {bk} ⊂ [1,∞),
∞∑
k=0

(bk − 1) < ∞, and
∞∑
k=1

ck < ∞, then lim
k→∞

ak

exists.

Lemma 2.5. [38] Let {ak} and {ck} be sequences of non-negative real numbers such that

ak+1 ≤ (1− γk)ak + γkbk + ck,∀k ∈ N ∪ {0},

where {γk} is a sequence in (0, 1) and {bk} is a sequence in R. Assume that
∞∑
k=0

ck < ∞. If
∞∑
k=0

γk = ∞ and lim sup
k→∞

bk ≤ 0, then lim
k→∞

ak = 0.

Lemma 2.6. [22] Let {ak} be a sequence of real numbers such that there exists a subsequence
{aki} of {ak} such that aki < aki+1, for all i ∈ N. Then, there exists a non-decreasing sequence
{mn} of positive integers such that lim

n→∞
mn = ∞ and the following properties hold:

amn
≤ amn+1 and an ≤ amn+1,

for all (sufficiently large) numbers n ∈ N. Indeed,mn is the largest number k in the set {1, 2, . . . , n}
such that

ak < ak+1.

3. MAIN RESULTS

Let C be a nonempty closed convex subset of a real Hilbert space H and T : H → H be
a quasi-nonexpansive mapping with I−T demiclosed at zero. The following assumptions
on the bifunction f : H ×H → R will be considered in this paper:
(A1) f(· , y) is sequentially weakly upper semicontinuous on C, for each fixed y ∈ C,

that is if {xk} ⊂ C is a sequence converging weakly to x ∈ C, then lim sup
k→∞

f(xk, y) ≤

f(x, y);
(A2) f(x, · ) is convex, subdifferentiable and lower semicontinuous onH , for each fixed

x ∈ H ;
(A3) f is psuedomonotone on C;
(A4) f is Lipshitz-type continuous on H .

Remark 3.3. i) If the bifunction f satisfies the assumptions (A3) and (A4), then
f(x, x) = 0, for each x ∈ C. Indeed, by using (2.7) and taking x = y = z ∈ C, we
have f(x, x) ≥ 0. It follows from the pseudomonotonic of f that f(x, x) = 0, for
each x ∈ C.

ii) If the bifunction f satisfies the assumptions (A1) − (A3), then the solution set
EP (f, C) is closed and convex, see [4, 28, 36] for more detail.

Now, we introduce the following modified inertial extragradient algorithm with non-
monotonic step sizes for solving the equilibrium and fixed point problems.
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Algorithm 1: Modified inertial extragradient algorithm with non-monotonic step sizes

Initialization. Choose parameters λ1 > 0, τ ∈ [0, 1), µ ∈ (0, 1), σ ∈
(
0, 1

2µ

)
, η ∈[

σ, 1
µ

)
, {γk} ⊂ [0, 1] such that lim

k→∞
γk = 1, {αk} ⊂ (0, 1) with 0 < inf αk ≤ supαk < 1,

{ξk} ⊂ [1,∞) with
∞∑
k=0

(ξk − 1) < ∞, {ρk} ⊂ [0,∞) with
∞∑
k=0

ρk < ∞, and {ϵk} ⊂ [0,∞),

{βk} ⊂ (0, 1) such that
∞∑
k=0

βk = ∞, lim
k→∞

βk = 0, and lim
k→∞

ϵk
βk

= 0. Pick x0, x1 ∈ H and set

k = 1.
Step 1. Choose θk such that 0 ≤ θk ≤ θk, where

θk =

min

{
τ,

ϵk
∥xk − xk−1∥

}
, if xk ̸= xk−1,

τ, otherwise,

and compute

wk = (1− βk) (xk + θk(xk − xk−1)) .

Step 2. Solve the strongly convex program

yk = argmin

{
ηλkf(wk, y) +

1

2
∥y − wk∥2 : y ∈ C

}
.

Step 3. Solve the strongly convex program

zk = argmin

{
σλkf(yk, y) +

1

2
∥y − wk∥2 : y ∈ C

}
.

Step 4. Compute

λk+1 =


min

{
ξkλk + ρk,

µ(∥wk − yk∥2 + ∥zk − yk∥2)
2 [f(wk, zk)− f(wk, yk)− f(yk, zk)]

}
,

if f(wk, zk)− f(wk, yk)− f(yk, zk) > 0,

ξkλk + ρk, otherwise.

Step 5. Compute

vk = γkwk + (1− γk)Twk.

Step 6. The next approximation xk+1 is defined as

xk+1 = αkvk + (1− αk)Tzk.

Step 7. Put k := k + 1 and go to Step 1.

Remark 3.4. i) The inertial-type method in Algorithm 1 is reformed, which is dif-
ferent from the inertial method in Algorithm 1.5. This means an inertial factor
θk is combined in Algorithm 1.5 and the single inertial in Algorithm 1.5 is repre-
sented by the term θk(xk − xk−1). Meanwhile, two inertial factors, βk and θk, are
included in Algorithm 1 and the double inertial in Algorithm 1 is proposed by the
terms θk(xk − xk−1) and βk(xk + θk(xk − xk−1)), which are intended to accelerate
the convergence speed of Algorithm 1. Numerical results assert that inertial terms
improve the performance of Algorithm 1 in terms of the number of iterations and
the CPU time.
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ii) The new parameters η and σ in Algorithm 1 are introduced to modify the extra-
gradient method. Observe that if the parameters η = σ = 1, then the modified
extragradient method which is included in Algorithm 1 reduces to the general sit-
uation such as presented in [16, 36]. We point out that the choices of parameters η
and σ may lead to the superior numerical behavior of Algorithm 1.

iii) The step size λk in Algorithm 1 is self-adaptive, which is constructed to implement
Algorithm 1 without prior knowledge of the Lipschitz constants of the bifunction
and automatically updates the iteration step size with a simple computation by
using some previously known information. Furthermore, this step size applies a
non-monotonic step size criterion, as highlighted in [35] and related references,
which is improved from the non-increasing step size rule such as in Algorithm
1.6, and it is reflected the computational efficiency of Algorithm 1 in the numerical
experiments.

The following lemma states the important relations in analyzing the convergence of
Algorithm 1.

Lemma 3.7. Let f : H ×H → R be a bifunction which satisfies (A1) − (A4). Suppose that the
solution set EP (f, C) is nonempty. Let wk ∈ H . If yk, zk, and λk+1 are constructed as in the
process of Algorithm 1, then the following result holds:

∥zk − p∥2 ≤ ∥wk−p∥2 −
(
σ

η
−µσλk
λk+1

)
∥wk−yk∥2 −

(
σ

η
−µσλk
λk+1

)
∥yk−zk∥2,∀p ∈ EP (f, C).

Proof. Let p ∈ EP (f, C). By the definition of yk and Lemma 2.3, we have

0 ∈ ∂2

{
ηλkf(wk, yk) +

1

2
∥yk − wk∥2

}
+NC(yk).

Then, there exists v ∈ ∂2f(wk, yk) and q ∈ NC(yk) such that

ηλkv + yk − wk + q = 0.(3.8)

So, by utilizing the subdifferentiability of f , we obtain that

f(wk, y)− f(wk, yk) ≥ ⟨v, y − yk⟩,∀y ∈ H.(3.9)

Besides, from q ∈ NC(yk), we have

⟨q, yk − y⟩ ≥ 0,∀y ∈ C.

Using this one together with the equality (3.8), we get

⟨wk − yk, yk − y⟩ ≥ ηλk⟨v, yk − y⟩,∀y ∈ C.(3.10)

Thus, the relations (3.9) and (3.10) imply that

⟨wk − yk, yk − y⟩ ≥ ηλk[f(wk, yk)− f(wk, y)],∀y ∈ C.(3.11)

Note that, from zk ∈ C, we have

ηλk[f(wk, zk)− f(wk, yk)] ≥ ⟨yk − wk, yk − zk⟩.(3.12)

Similarly, by the definition of zk and Lemma 2.3, we can show that

⟨wk − zk, zk − y⟩ ≥ σλk[f(yk, zk)− f(yk, y)],∀y ∈ C.(3.13)

Indeed, since p ∈ C, we have

⟨wk − zk, zk − p⟩ ≥ σλk[f(yk, zk)− f(yk, p)].
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It follows from the pseudomonotonic of f that

⟨wk − zk, zk − p⟩ ≥ σλkf(yk, zk).(3.14)

Combining with the relation (3.12) implies that

ησλk[f(wk, zk)− f(wk, yk)− f(yk, zk)] ≥ η⟨zk − wk, zk − p⟩
+σ⟨yk − wk, yk − zk⟩.(3.15)

On the other hand, by the definition of λk+1, we note that

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤
µ(∥wk − yk∥2 + ∥yk − zk∥2)

2λk+1
.(3.16)

This together with the relation (3.15) yields that

η⟨wk − zk, zk − p⟩ ≥ σ⟨yk − wk, yk − zk⟩ −
µησλk(∥wk − yk∥2 + ∥yk − zk∥2)

2λk+1
.

Due to the above relation, we provide the following

η
(
∥wk − p∥2 − ∥wk − zk∥2 − ∥zk − p∥2

)
= 2η⟨wk − zk, zk − p⟩
≥ 2σ⟨yk − wk, yk − zk⟩

−µησλk(∥wk − yk∥2 + ∥yk − zk∥2)
λk+1

.

This implies that

∥zk − p∥2 ≤ ∥wk − p∥2 − ∥wk − zk∥2 −
2σ

η
⟨yk − wk, yk − zk⟩

+
µσλk(∥wk − yk∥2 + ∥yk − zk∥2)

λk+1

= ∥wk − p∥2 − ∥wk − zk∥2 +
σ

η
∥wk − zk∥2 −

σ

η
∥wk − yk∥2 −

σ

η
∥yk − zk∥2

+
µσλk(∥wk − yk∥2 + ∥yk − zk∥2)

λk+1

= ∥wk − p∥2 −
(
σ

η
− µσλk
λk+1

)
∥wk − yk∥2 −

(
σ

η
− µσλk
λk+1

)
∥yk − zk∥2

−(1− σ

η
)∥wk − zk∥2.(3.17)

Then, by using the choices of the parameters σ and η (noting that
σ

η
∈ (0, 1]), we have

∥zk − p∥2 ≤ ∥wk − p∥2 −
(
σ

η
− µσλk
λk+1

)
∥wk − yk∥2 −

(
σ

η
− µσλk
λk+1

)
∥yk − zk∥2.

This completes the proof. □

Now, we are in a position to analyze the strong convergence theorem of Algorithm 1.

Theorem 3.1. Let f : H ×H → R be a bifunction which satisfies (A1)− (A4) and T : H → H
be a quasi-nonexpansive mapping with I − T demiclosed at zero. Suppose that the solution set
EP (f, C) ∩ F (T ) is nonempty. Then, the sequence {xk} generated by Algorithm 1 converges
strongly to the minimum-norm element of EP (f, C) ∩ F (T ).
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Proof. Let p ∈ EP (f, C)∩F (T ) be picked. Firstly, by the Lipschitz-type continuity of f on
H , there exists two positive constants c1 and c2 such that

f(wk, zk)− f(wk, yk)− f(yk, zk) ≤ c1∥wk − yk∥2 + c2∥yk − zk∥2

≤ max {c1, c2} (∥wk − yk∥2 + ∥yk − zk∥2).
Using this one together with the definition of λk+1 and the facts of the sequences {ξk} and
{ρk}, we have

λk+1 ≥ min

{
ξkλk + ρk,

µ

2max {c1, c2}

}
≥ min

{
λk,

µ

2max {c1, c2}

}
.

By induction, we obtain that the sequence {λk} has a lower bound as min

{
λ1,

µ

2max {c1,c2}

}
.

On the other hand, by the definition of λk+1, we observe that λk+1 ≤ ξkλk + ρk, for
each k ∈ N. It follows from the the properties of the sequences {ξk}, {ρk} and Lemma 2.4
that lim

k→∞
λk exists. This together with the assumptions on the parameters σ ∈

(
0, 1

2µ

)
,

η ∈
[
σ, 1

µ

)
, and µ ∈ (0, 1) yields that

lim
k→∞

(
σ

η
− µσλk
λk+1

)
= σ

(
1

η
− µ

)
> 0.

Thus, there exists k0 ∈ N such that
σ

η
− µσλk
λk+1

> 0,∀k ≥ k0.

Now, let us consider for each k ∈ N such that k ≥ k0. By using the useful result of
Lemma 3.7 and the above fact, we have

∥zk − p∥ ≤ ∥wk − p∥.(3.18)

In addition, by the definition of vk and the quasi-nonexpansivity of T , one sees that

∥vk − p∥ ≤ γk∥wk − p∥+ (1− γk)∥Twk − p∥
≤ γk∥wk − p∥+ (1− γk)∥wk − p∥
= ∥wk − p∥.(3.19)

Using the above relations, in view of the definition of xk+1 and the quasi-nonexpansivity
of T , we obtain

∥xk+1 − p∥ ≤ αk∥vk − p∥+ (1− αk)∥Tzk − p∥
≤ αk∥wk − p∥+ (1− αk)∥zk − p∥
≤ αk∥wk − p∥+ (1− αk)∥wk − p∥
= ∥wk − p∥.(3.20)

Moreover, due to the definition of wk, we observe that

∥wk − p∥ = ∥(1− βk)(xk − p) + (1− βk)θk(xk − xk−1)− βkp∥
≤ (1− βk)∥xk − p∥+ (1− βk)θk∥xk − xk−1∥+ βk∥p∥

= (1− βk)∥xk − p∥+ βk

[
(1− βk)

θk
βk

∥xk − xk−1∥+ ∥p∥
]
.(3.21)

It follows from the choices of the sequences {θk} that

(1− βk)
θk
βk

∥xk − xk−1∥ ≤ (1− βk)
ϵk
βk
.
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Applying the fact that lim
k→∞

ϵk
βk

= 0, we obtain

(3.22) lim
k→∞

(1− βk)
θk
βk

∥xk − xk−1∥ = 0.

Thus, there exists a constant M1 > 0 such that

(3.23) (1− βk)
θk
βk

∥xk − xk−1∥ ≤M1.

Using this one together with the relations (3.20) and (3.21), we have

∥xk+1 − p∥ ≤ (1− βk)∥xk − p∥+ βk (M1 + ∥p∥)
≤ max {∥xk − p∥,M1 + ∥p∥}
≤ · · ·
≤ max {∥xk0 − p∥,M1 + ∥p∥} .

This implies that the sequence {∥xk − p∥} is bounded. Consequently, {xk} is a bounded
sequence.

Besides, the relations (3.21) and (3.23) imply that

∥wk − p∥2 ≤ [(1− βk)∥xk − p∥+ βk(M1 + ∥p∥)]2

= (1− βk)
2∥xk − p∥2 + βk

[
2(1− βk)(M1 + ∥p∥)∥xk − p∥+ βk(M1 + ∥p∥)2

]
≤ ∥xk − p∥2 + βkM2,(3.24)

where M2 = sup
k≥k0

{
2(1− βk)(M1 + ∥p∥)∥xk − p∥+ βk(M1 + ∥p∥)2

}
> 0. Thus, applying

Lemma 3.7 to the above relation, we have

∥zk − p∥2 ≤ ∥xk − p∥2 + βkM2 −
(
σ

η
− µσλk
λk+1

)
∥wk − yk∥2

−
(
σ

η
− µσλk
λk+1

)
∥yk − zk∥2.(3.25)

On the other hand, from the definition of xk+1 and by utilizing the quasi-nonexpansivity
of T and the relation (3.19), we obtain

∥xk+1 − p∥2 = ∥αk(vk − p) + (1− αk)(Tzk − p)∥2

= αk∥vk − p∥2 + (1− αk)∥Tzk − p∥2 − αk(1− αk)∥Tzk − vk∥2

≤ αk∥wk − p∥2 + (1− αk)∥zk − p∥2 − αk(1− αk)∥Tzk − vk∥2.

This together with the relations (3.24) and (3.25) yields that

∥xk+1 − p∥2 ≤ ∥xk − p∥2 + βkM2 − (1− αk)

(
σ

η
− µσλk
λk+1

)
∥wk − yk∥2

−(1− αk)

(
σ

η
− µσλk
λk+1

)
∥yk − zk∥2 − αk(1− αk)∥Tzk − vk∥2.

This implies that

(1− αk)

[(
σ

η
− µσλk
λk+1

)
∥wk − yk∥2 +

(
σ

η
− µσλk
λk+1

)
∥yk − zk∥2 + αk∥Tzk − vk∥2

]
≤ ∥xk − p∥2 − ∥xk+1 − p∥2 + βkM2.(3.26)

Next, we will show that {xk} converges strongly to p̃ := PEP (f,C)∩F (T )(0). We investi-
gate the following two possible cases.
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Case 1. Suppose that ∥xk+1 − p̃∥ ≤ ∥xk − p̃∥, for all k ≥ k0. This means that {∥xk −
p̃∥}k≥k0

is a non-increasing sequence. Consequently, by using this one together with the
boundness property of {∥xk − p̃∥}, we get that the limit of ∥xk − p̃∥ exists. It follows from
the relation (3.26) and the properties of the control sequences {αk} and {βk} that

(3.27) lim
k→∞

∥wk − yk∥ = 0,

(3.28) lim
k→∞

∥yk − zk∥ = 0,

and

(3.29) lim
k→∞

∥Tzk − vk∥ = 0.

These imply that

(3.30) lim
k→∞

∥wk − zk∥ = 0.

Furthermore, since ∥wk − xk∥ ≤ θk∥xk − xk−1∥+ βkθk∥xk − xk−1∥+ βk∥xk∥, it follows
from lim

k→∞
θk∥xk − xk−1∥ = 0 and lim

k→∞
βk = 0 that

(3.31) lim
k→∞

∥wk − xk∥ = 0.

Combining with (3.27) implies that

(3.32) lim
k→∞

∥xk − yk∥ = 0.

This together with (3.28) yields that

(3.33) lim
k→∞

∥xk − zk∥ = 0.

Moreover, by the definition of vk and limk→∞ γk = 1, we have

lim
k→∞

∥vk − wk∥ = lim
k→∞

∥γkwk + (1− γk)Twk − wk∥

= lim
k→∞

(1− γk)∥Twk − wk∥

= 0.(3.34)

So, since ∥Tzk − zk∥ ≤ ∥Tzk − vk∥ + ∥vk − wk∥ + ∥wk − zk∥ and the facts (3.29), (3.30),
(3.34), we obtain

(3.35) lim
k→∞

∥Tzk − zk∥ = 0.

On the other hand, we observe that

∥wk − p̃∥2 = ∥(1− βk)(xk − p̃) + (1− βk)θk(xk − xk−1)− βkp̃∥2

≤ (1− βk)∥xk − p̃∥2 + 2(1− βk)θk⟨xk − xk−1, wk − p̃⟩+ 2βk⟨−p̃, wk − p̃⟩
≤ (1− βk)∥xk − p̃∥2 + 2(1− βk)θk∥xk − xk−1∥∥wk − p̃∥

+2βk⟨−p̃, wk − xk⟩+ 2βk⟨−p̃, xk − p̃⟩
≤ (1− βk)∥xk − p̃∥2 + 2(1− βk)θk∥xk − xk−1∥∥wk − p̃∥

+2βk∥p̃∥∥wk − xk∥+ 2βk⟨xk − p̃,−p̃⟩

= (1− βk)∥xk − p̃∥2 + βk

(
2(1− βk)

θk
βk

∥xk − xk−1∥∥wk − p̃∥+ 2∥p̃∥∥wk − xk∥

+2⟨xk − p̃,−p̃⟩
)
.
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It follows from the relation (3.20) that

∥xk+1 − p̃∥2 ≤ (1− βk)∥xk − p̃∥2 + βk

(
2(1− βk)

θk
βk

∥xk − xk−1∥∥wk − p̃∥

+2∥p̃∥∥wk − xk∥+ 2⟨xk − p̃,−p̃⟩
)
.(3.36)

Now, we will complete the proof of this theorem by applying the Lemma 2.5. The
remaining part of the proof is to show that ωw(xk) ⊂ EP (f, C) ∩ F (T ). Let x∗ ∈ ωw(xk)
and {xkn

} be a subsequence of {xk} such that xkn
⇀ x∗, as n → ∞. We know that,

by using (3.31), (3.32), and (3.33), we also have wkn
⇀ x∗, ykn

⇀ x∗, and zkn
⇀ x∗, as

n→ ∞. Since C is closed and convex set, so C is weakly closed, therefore we can confirm
that x∗ ∈ C.

Next, in view of the relations (3.12), (3.13), and (3.16), we obtain

σλkn
f(ykn

, y) ≥ σλkn
f(ykn

, zkn
) + ⟨wkn

− zkn
, y − zkn

⟩

≥ σλkn
f(wkn

, zkn
)− σλkn

f(wkn
, ykn

)− µσλkn

2λkn+1
∥wkn

− ykn
∥2

− µσλkn

2λkn+1
∥ykn − zkn∥2 + ⟨wkn − zkn , y − zkn⟩

≥ σ

η
⟨ykn − wkn , ykn − zkn⟩ −

µσλkn

2λkn+1
∥wkn − ykn∥2

− µσλkn

2λkn+1
∥ykn − zkn∥2 + ⟨wkn − zkn , y − zkn⟩,(3.37)

for each y ∈ C. Thus, by using the facts (3.27), (3.28), (3.30), and the boundedness of {zk},
we have the right-hand side of the above inequality tends to zero. It follows from the
sequentially weakly upper semicontinuity of f and the parameters σ, λkn > 0 that

0 ≤ lim sup
n→∞

f(ykn
, y) ≤ f(x∗, y),∀y ∈ C.

This means that x∗ ∈ EP (f, C). On the other hand, since zkn
⇀ x∗, as n→ ∞, and (3.35),

then by the demiclosedness at zero of I − T , we have x∗ ∈ F (T ). Then, we had shown
that x∗ ∈ EP (f, C) ∩ F (T ), and so ωw(xk) ⊂ EP (f, C) ∩ F (T ).

Finally, from the properties of p̃ := PEP (f,C)∩F (T )(0) and x∗ ∈ ωw(xk) ⊂ EP (f, C) ∩
F (T ), we obtain that

(3.38) lim sup
k→∞

⟨xk − p̃,−p̃⟩ = lim
n→∞

⟨xkn − p̃,−p̃⟩ = ⟨x∗ − p̃,−p̃⟩ ≤ 0.

Hence, by (3.22), (3.31), (3.36), (3.38), and Lemma 2.5, we have

(3.39) lim
k→∞

∥xk − p̃∥ = 0.

This completes the proof for the first case.

Case 2. Suppose that there exists a subsequence {∥xki
− p̃∥} of {∥xk − p̃∥} such that

∥xki
− p̃∥ < ∥xki+1 − p̃∥, ∀i ∈ N.

According to Lemma 2.6, there exists a non-decreasing sequence {mn} ⊂ N such that
lim
n→∞

mn = ∞, and

∥xmn
− p̃∥ ≤ ∥xmn+1 − p̃∥ and ∥xn − p̃∥ ≤ ∥xmn+1 − p̃∥, ∀n ∈ N.(3.40)
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This together with the relation (3.26) yields that

(1− αmn
)

[(
σ

η
− µσλmn

λmn+1

)
∥wmn

− ymn
∥2 +

(
σ

η
− µσλmn

λmn+1

)
∥ymn

− zmn
∥2

+αmn
∥Tzmn

− vmn
∥2
]

≤ ∥xmn
− p̃∥2 − ∥xmn+1 − p̃∥2 + βmn

M2

≤ ∥xmn+1 − p̃∥2 − ∥xmn+1 − p̃∥2 + βmn
M2

= βmn
M2.

Following the line proof of Case 1, we can show that

(3.41) lim
n→∞

∥wmn − ymn∥ = 0, lim
n→∞

∥ymn − zmn∥ = 0,

(3.42) lim
n→∞

∥wmn
− zmn

∥ = 0, lim
n→∞

∥xmn
− ymn

∥ = 0,

(3.43) lim
n→∞

∥wmn
− xmn

∥ = 0, lim
n→∞

∥Tzmn
− zmn

∥ = 0,

(3.44) lim sup
n→∞

⟨xmn − p̃,−p̃⟩ ≤ 0,

and

∥xmn+1−p̃∥2 ≤ (1− βmn
)∥xmn

− p̃∥2 +βmn

(
2(1− βmn

)
θmn

βmn

∥xmn
− xmn−1∥∥wmn

− p̃∥

+2∥p̃∥∥wmn − xmn∥+ 2⟨xmn − p̃,−p̃⟩
)
.

Combining with the relation (3.40) implies that

∥xmn+1−p̃∥2 ≤ (1−βmn
)∥xmn+1−p̃∥2+βmn

(
2(1−βmn

)
θmn

βmn

∥xmn
−xmn−1∥∥wmn

− p̃∥

+2∥p̃∥∥wmn
− xmn

∥+2⟨xmn
− p̃,−p̃⟩

)
.

Using this one together with the relation (3.40) again, we obtain

∥xn − p̃∥2 ≤ 2(1− βmn)
θmn

βmn

∥xmn − xmn−1∥∥wmn − p̃∥+ 2∥p̃∥∥wmn − xmn∥

+2⟨xmn
− p̃,−p̃⟩.

Then, by using (3.22), (3.43), and (3.44), we have

lim sup
n→∞

∥xn − p̃∥2 ≤ 0.

Hence, we can conclude that the sequence {xn} converges strongly to p̃ = PEP (f,C)∩F (T )(0).
This completes the proof. □
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4. NUMERICAL EXPERIMENTS

This section will consider some examples and numerical results to illustrate the con-
vergence of the proposed algorithm. We will compare the introduced algorithm with
Algorithm 1.5 in Example 4.1 and Algorithm 1.6 in Example 4.2. All the numerical experi-
ments are written in Matlab R2021b and performed on a MacBook Air with Apple M1 and
RAM 8.00 GB. In both two examples Example 4.1 and Example 4.2, for each considered
matrix, the ∥ · ∥ means the spectral norm.

Example 4.1. Let H = Rn be a real Hilbert space with the Euclidean norm. We consider
the equilibrium and fixed point problems when T = IRn is the identity mapping on Rn. It
follows that the equilibrium and fixed point problems become the equilibrium problem.
In this case, we compare Algorithm 1 with Algorithm 1.5. The bifunction f̃ which is given
by the form of Nash-Cournot oligopolistic equilibrium models of electricity markets, see
[11, 28], is defined by

f̃(x, y) = ⟨Px+Qy, y − x⟩, ∀x, y ∈ Rn,(4.45)

where P ,Q ∈ Rn×n are matrices such thatQ is symmetric positive semidefinite andQ−P
is negative semidefinite. Notice that f̃(x, y)+ f̃(y, x) = (x−y)T (Q−P )(x−y),∀x, y ∈ Rn.
Thus, by the property of Q−P , we have that f̃ is a monotone operator. Now, we consider
the bifunction f which is generated by

(4.46) f(x, y) =

{
f̃(x, y), if (x, y) ∈ C × C,

0, otherwise,

where C =
∏n

i=1[−5, 5] is the constrained box, see [32]. We observe that the bifunction f
satisfies Lipschitz-type continuous, see [36].

Here, the numerical experiment is considered under the following setting: the matrices
P and Q are randomly chosen from the interval [−5, 5] such that they satisfy the above
required properties. The control parameters of Algorithm 1 are taken as follows: λ1 = 0.6,
τ = 0.6, µ = 0.4, γk = 1 − 1

k+2 , αk = 0.01 + 1
k+1 , ϵk = 1

(k+1)2 , and θk = θk. Besides, the
starting points x0 = x1 ∈ Rn are randomly chosen from the interval [−5, 5]. Algorithm 1
was tested along with Algorithm 1.5 by using the stopping criteria ∥xk+1−xk∥

∥xk∥+1 < 10−6.
In the first experiment, we fix the parameters ξk = 1+ 1

(k+1)1.1 , ρk = 1
(k+1)1.1 , βk = 1

k+1 ,
and present results for any collections of parameters η = 0.6, 0.8, 1, 1.2, 1.4 and σ = 0.6,
0.8, 1, 1.2 when n = 10. We omit the combinations that do not satisfy the assumption in
Theorem 3.1 and label it by −.

TABLE 1. Influence of parameters η and σ in Algorithm 1 where ξk =
1 + 1

(k+1)1.1 , ρk = 1
(k+1)1.1 , and βk = 1

k+1 for the equilibrium problem in
Example 4.1

Algorithm 1 η = 0.6 η = 0.8 η = 1 η = 1.2 η = 1.4 Algorithm 1.5
σ Iter Time Iter Time Iter Time Iter Time Iter Time Iter Time
0.6 91 0.11 122 0.12 143 0.13 165 0.13 184 0.13
0.8 - - 96 0.09 121 0.09 141 0.12 154 0.12 1626 1.07
1 - - - - 94 0.09 109 0.09 122 0.10
1.2 - - - - - - 88 0.07 105 0.09

From Table 1, we presented the number of iterations (Iter) and the CPU time (Time) in
seconds. The best choice of the involved parameters for both cases is η = 1.2 and σ = 1.2.
This means the number of iterations and the CPU time of Algorithm 1 from these cases
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are better than other all considered cases. Notice that, for each fixed parameter σ, as η in-
creases, both the number of iterations and CPU time of Algorithm 1 increase. Conversely,
for each fixed parameter η, as σ increases, both the number of iterations and CPU time of
Algorithm 1 reduce, demonstrating that the performance of Algorithm 1 improves. These
lead to the conclusion that the superior numerical performance of Algorithm 1 is influ-
enced by the choice of parameters η and σ. However, in all considered cases, the number
of iterations as well as the CPU time of Algorithm 1 are better than those of Algorithm 1.5.

In the second experiment, we regard the influence of parameters ξk and ρk where the
parameters η = 1.2, σ = 1.2, and βk = 1

k+1 are fixed. The results are presented for any
collections of parameters ξk = 1, 1 + 1

(k+1)1.1 and ρk = 0, 1
(k+1)1.1 when n = 10.

TABLE 2. Influence of parameter ξk and ρk in Algorithm 1 where η = 1.2,
σ = 1.2, and βk = 1

k+1 for the equilibrium problem in Example 4.1

Algorithm 1 ξk = 1 ξk = 1 + 1
(k+1)1.1

Algorithm 1.5
ρk Iter Time Iter Time Iter Time
0 257 0.32 80 0.07 1229 0.83

1
(k+1)1.1

69 0.06 68 0.06

From Table 2, we see that the related parameters ξk = 1 + 1
(k+1)1.1 and ρk = 1

(k+1)1.1

provide better the number of iterations and the CPU time than other cases. Moreover, in
the case ξk = 1 and ρk = 0, the step size {λk} in Algorithm 1 is reduced to a non-increasing
sequence, which affects the efficiency of Algorithm 1, in the terms of both the number of
iterations and CPU time. Finally, the number of iterations and the CPU time of Algorithm
1 are better than those of Algorithm 1.5 as in the above experiment.

In the third experiment, the parameters βk is considered by fixing the best parameters
η = 1.2, σ = 1.2, and ξk = 1 + 1

(k+1)1.1 , ρk = 1
(k+1)1.1 . We show results for any collections

of parameters βk = 1
k+1 ,

1
5(k+1) ,

1
10(k+1) when n = 10.

TABLE 3. Influence of parameter βk in Algorithm 1 where η = 1.2, σ =
1.2, and ξk = 1 + 1

(k+1)1.1 , ρk = 1
(k+1)1.1 for the equilibrium problem in

Example 4.1

Algorithm 1 Algorithm 1.5
βk Iter Time Iter Time

1
k+1 59 0.06

1
5(k+1)

126 0.09 1364 0.88
1

10(k+1)
134 0.11

From Table 3, we may suggest that the largest size of parameter βk, as βk = 1
k+1 , yields

better the number of iterations and the CPU time than other cases. This implies that the
inertial factor βk included in Algorithm 1 improves the speed of convergence of Algorithm
1 when the appropriate value of another inertial factor θk is chosen. Besides, the number
of iterations and the CPU time of Algorithm 1 are better than those of Algorithm 1.5,
indicating that Algorithm 1 has a better performance.

Example 4.2. Let H = R2 be a real Hilbert space with the Euclidean norm and C =∏2
i=1[−10, 10] be the constrained box. We consider the operator F which is given by

Fx =

((
x21 + (x2 − 1)2

)
(1 + x2)

−x31 − x1(x2 − 1)2

)
,



378 Thanyaluck Ngamkhum, Komkind Punpeng and Manatchanok Khonchaliew

where x = (x1, x2)
T . Set f̃(x, y) = ⟨Fx, y − x⟩,∀x, y ∈ R2. We observe that the oper-

ator F is pseudomonotone rather than monotone, see [31], and thus the bifunction f̃ is
pseudomonotone on C. Notice that EP (f̃ , C) has a unique element as x∗ = (0,−1)T .

On the other hand, for a convex function g : R2 → R such that there is x ∈ R2 satisfied
g(x) ≤ 0, we consider a mapping T : R2 → R2, which is defined by

Tx =

{
x− g(x)

∥zx∥2 zx, if g(x) > 0,

x, otherwise,

where zx ∈ ∂g(x). Then, we know that T is a quasi-nonexpansive mapping with I − T
demiclosed at zero and F (T ) = {x ∈ R2 : g(x) ≤ 0}, see [3, 17].

The numerical experiment is considered under the following setting: the bifunction
f , and the control parameters are given as in Example 4.1 by fixing the best choice of
parameters η = 1.2, σ = 1.2, ξk = 1 + 1

(k+1)1.1 , ρk = 1
(k+1)1.1 , and βk = 1

k+1 . In addition,
we consider g(x) = max{0, ⟨c, x⟩+d} where the vector c ∈ R2 is randomly chosen from the
interval (0, 2) and the real number d is randomly chosen from the interval (−2,−3). Here,
the starting points x0 = x1 ∈ R2 are randomly chosen from the interval [−10, 10] and the
results are presented for any collections of parameters γk = 1− 1

k+2 , 1 and αk = 0.01+ 1
k+1 ,

0.5 + 1
k+3 , 0.9 − 1

k+2 . Algorithm 1 was tested along with Algorithm 1.6 by using the

stopping criteria ∥xk+1−xk∥
∥xk∥+1 < 10−4.

TABLE 4. Influence of parameters γk and αk in Algorithm 1 for the equi-
librium and fixed point problems in Example 4.2

Algorithm 1 γk = 1 − 1
k+2 γk = 1 Algorithm 1.6

αk Iter Time Iter Time Iter Time
0.01 + 1

k+1 103 0.11 118 0.18
0.5 + 1

k+3 120 0.10 120 0.10 22293 14.79
0.9 − 1

k+2 861 0.56 861 0.60

Table 4 shows that the concerned parameters γk = 1 − 1
k+2 and αk = 0.01 + 1

k+1

provide better the number of iterations and the CPU time than other cases. Furthermore,
we observe that the number of iterations and the CPU time of the parameter γk = 1, in
which the Ishikawa iteration reduces to the Mann iteration, are greater than or equal to
those in other cases. Finally, Algorithm 1 outperforms Algorithm 1.6 in terms of both the
number of iterations and CPU time.

5. CONCLUSIONS

We present an algorithm for solving the equilibrium and fixed point problems when the
bifunction is pseudomonotone and satisfies Lipschitz-type continuous and the mapping
is quasi-nonexpansive in a real Hilbert space. The modified inertial and extragradient
methods together with the Ishikawa iteration technique and self-adaptive non-monotonic
step size concept are introduced for establishing a sequence which is strongly convergent
to a common solution of the pseudomonotone equilibrium problem and the fixed point
problem for the quasi-nonexpansive mapping. Some numerical experiments are provided
to illustrate the convergence behavior of the proposed algorithm in comparison with some
appeared algorithms. One of the goals of the future research directions is to analyze the
rate of convergence for the proposed algorithm.
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