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Two inertial projective Mann forward-backward algorithm
for variational inclusion problems and application to stroke
prediction

PRONPAT PEEYADA, PONKAMON KITISAK, WATCHARAPORN CHOLAMJIAK and
DAMRONGSAK YAMBANGWAI

ABSTRACT. This paper presents a two inertial technique with a projection Mann forward-backward splitting
algorithm for solving variational inclusion problems that exhibit weak convergence under suitable conditions
in Hilbert spaces. Furthermore, we provide a numerical example in infinitely dimensional spaces to support
the main result. Finally, we provide an application for data classification using an extreme learning machine.
According to data provided by the World Health Organization (WHO), stroke is recognized as the predominant
contributor to mortality and disability on a global scale. To appraise the efficacy of our algorithm, we procured
a dependable dataset for stroke prediction from the Kaggle website. The best algorithm that performed this task
is ours compared to other machine learning methods.

1. INTRODUCTION

In the past decade, extensive scholarly efforts have been dedicated to developing com-
prehensive problem formulations in optimization. It all started with [8], where an equi-
librium problem was considered. Subsequently, the research landscape expanded signifi-
cantly, evident from the extensive list of references [3, 7, 11, 17].

In recent years, significant research has been dedicated to the study of inclusion prob-
lems, which extend and generalize the concept of equilibrium problems. These inclusion
problems cover various problem classes across various academic disciplines. They en-
compass topics such as variational inequalities, fixed point and coincidence point prob-
lems, complementarity problems, and the Nash equilibrium problem, among other no-
table areas [19, 27]. Noteworthy scholarly works, such as the references [2, 9, 10], specifi-
cally focus on a distinct subset of inclusion problems known as variational inclusion prob-
lems. These problems are primarily concerned with identifying and characterizing the
zeros of maximal monotone mappings.

Throughout this paper, we consistently assume that H is a real Hilbert space with inner
product ⟨., .⟩ and norm ∥.∥. Let G : H → 2H be a multi-valued monotone operator and
F : H → H be a single-valued operator. We consider the following variational inclusion
problem: find a point x̂ ∈ H such that

(1.1) 0 ∈ (F+ G)x̂.
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We denote the solution set of (1.1). The variational inclusion problem represents a
substantial progression from the variational inequality problem within the field. By ef-
fectively reformulating various nonlinear problems such as saddle point problems, min-
imization problems, and split feasibility problems as variational inclusion problems, sig-
nificant advancements are made. These transformations carry significant implications
across a range of domains, including signal processing, neural networks, medical image
reconstruction, machine learning, and data mining (see [1, 21, 25]).

An increasing number of scholars are actively researching diverse methodologies to
tackle the intricate variational inclusion problem effectively. The forward-backward split-
ting method has gained prominence in this scholarly domain. The following exposition
outlines this approach.

(1.2) xk+1 = JG
r (x

k − rFxk), k ≥ 1,

where JG
r = (I+rG)−1 with r > 0. Furthermore, researchers have modified these methods

by increasing their versatility through relaxation techniques and improving their acceler-
ation using inertial techniques.

Alvarez and Attouch [4] extended the heavy ball method to encompass a broader con-
text involving a general maximal monotone operator. This extension was achieved by
strategically integrating the proximal point algorithm framework, resulting in the cre-
ation of the advanced inertial proximal point algorithm (IPA), formally represented as:

(1.3)

{
yk = xk + θk(xk − xk−1),

xk+1 = JG
rk(y

k), k ≥ 1.

They proved that under the specified condition.

(1.4)
∞∑
k=1

θk∥xk − xk−1∥ < ∞,

the algorithm (1.3) weakly converges to a zero of G. An additional single-valued, coco-
ercive, and Lipschitz continuous operator, denoted as F, into the inertial proximal point
algorithm, known as the splitting inertial proximal algorithm (SIPA) has been introduced
by Moudafi and Oliny [23].

(1.5)

{
yk = xk + θk(xk − xk−1),

xk+1 = JG
rk(y

k − rkFxk), k ≥ 1.

They achieved a weak convergence result using the algorithm (1.5) under the same con-
dition (1.4) as specified in [4]. As noted in [18], algorithm (1.5) does not use the format of
a forward-backward splitting algorithm because operator F is still evaluated on the point
xk when θk > 0.

Recently, Iyioa and Shehu [15] considered the second order dynamical system. Conse-
quently, we can express the discretization of the system as follows:

(1.6)

{
yk = xk + θk(xk − xk−1) + δk(xk−1 + xk−2),

xk+1 = (1− αk)yk + αkJG
rk(y

k),

which is called the two-step inertial proximal point algorithm (TSIPA). Where rk > 0, θk

and δk satisfy some conditions.
Inspired and motivated by the aforementioned studies, we propose a two inertial tech-

nique with a projection Mann forward-backward splitting algorithm to solve variational
inclusion problems in a real Hilbert spaces. Under some standard and mild conditions,
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we obtain a weak convergence result for the proposed algorithm and obtain a consequent
result. In addition, we provide a numerical example in infinitely dimensional spaces to
support the main result. Finally, we also provide an application to predict the stroke
dataset by using our proposed algorithm in an extreme learning machine. To ascertain
which classification model predicts the dataset more accurately, we calculate and com-
pare a range of performance metrics such as accuracy, precision, recall, and F1-score. The
results revealed that the proposed algorithm has better efficiency in handling classifica-
tion problems.

2. PRELIMINARIES

This section will rely on the following key lemmas to support our main findings.

Definition 2.1. Let G : H → 2H be a multi-valued operator. Then G is said to be
(i) monotone if ⟨p− q, x− y⟩ ≥ 0, for all (x, p), (y, q) ∈ gra(G) (the graph of operator G),
(ii) maximal monotone if G dose not admit proper monotone extension.

Definition 2.2. A operator F : H → H is said to be
(i) firmly nonexpansive if for all x, y ∈ H ,

⟨x− y,Fx− Fy⟩ ≥ ∥Fx− Fy∥2,

(ii) η-inverse strongly monotone if ηF is firmly nonexpansive when η > 0,
(iii) L-Lipschitz continuous if there is L > 0 such that for all x, y ∈ H ,

∥Fx− Fy∥ ≤ L∥x− y∥,

(iv) nonexpansive if for all x, y ∈ H , ∥Fx− Fy∥ ≤ ∥x− y∥.

According to the definition, it is clear that every η-cocoercive mapping is monotone
and 1

η -Lipschitz continuous. It is widely acknowledged that when G : H → 2H is a multi-
valued maximal monotone operator and r > 0, the operator JG

r := (I + rG)−1 represents
a single-valued firmly nonexpansive mapping [22].

Lemma 2.1. [12] Let F : H → H be a nonexpansive mapping such that Fix(F) ̸= ∅. If there
exists a sequence

{
xk

}
in H such that xk ⇀ x ∈ H and ∥xk − Fxk∥ → 0, then x ∈ Fix(F).

Lemma 2.2. [16] Let F : H → H be η-inverse strongly monotone and G : H → 2H a maximal
monotone operator. Then, we have

(i) for r > 0, F ix(JG
r (I − rF)) = (F+ G)−1(0),

(ii) for 0 < r < r̄ and x ∈ H, ∥x− JG
r (I − rF)x∥ ≤ 2∥x− JG

r̄ (I − r̄F)x∥

Lemma 2.3. [6] Let Γ be a nonempty set of H and {xk} be a sequence in H . Assume that the
following conditions hold.

(i) for every x ∈ Γ, {∥xk − x∥} converges.
(ii) Every weak sequence cluster point of {xk} belongs to Γ.

Then {xk} weakly converges to an element in Γ.

Lemma 2.4. [5] Let {ak} and {bk} be a nonnegative sequences of real number satisfying
∞∑
k=1

bk <

∞ and ak+1 ≤ ak + bk. Then, {ak} is a convergent sequences.
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3. MAIN RESULTS

In the section, we suppose that that E is a nonempty closed and convex subset of H .
Let F : H → H be η-inverse strongly monotone and G : H → 2H a maximal monotone
operator such that (F + G)−1(0) ∩ E ̸= ∅. We present our proposed algorithm for solv-
ing variational inclusion problem (1.1) and prove its weak convergence as the following
Algorithm 3.0.1.

Algorithm 3.0.1. Initialization: Let x−1, x0, x1 ∈ H, {αk} ⊂ (a, b) ⊂ (0, 1] ,
{
rk
}
⊂ (c, d) ⊂

(0, 2η) ,
{
θk
}
,
{
δk
}
⊂ (−∞,∞) satisfy the following conditions:

∞∑
k=1

|θk|∥xk − xk−1∥ < ∞ and
∞∑
k=1

|δk|∥xk−1 − xk−2∥ < ∞,

Step 1. Compute

yk = xk + θk(xk − xk−1) + δk(xk−1 − xk−2),

Step 2. Compute

xk+1 = PE((1− αk)xk + αkJkyk),

where Jk = JG
rk

(
I − rkF

)
. Set k = k + 1 and return to Step 1.

Theorem 3.1. The sequence {xk} generated by Algorithm 3.0.1 converges weakly to an element
in (F+ G)−1(0) ∩ E.

Proof. Let x∗ ∈ (F+ G)−1(0) ∩ E. Since {rk} ⊂ (0, 2η), Jk is nonexpansive mapping, and
F is η-inverse strongly monotone, we have

∥xk+1 − x∗∥ = ∥PE((1− αk)xk + αkJkyk)− x∗∥
≤ (1− αk)∥xk − x∗∥+ αk∥Jkyk − x∗∥
≤ (1− αk)∥xk − x∗∥+ αk∥xk + θk(xk − xk−1) + δk(xk−1 − xk−2)− x∗∥
≤ (1− αk)∥xk − x∗∥+ αk∥xk − x∗∥+ αk|θk|∥xk − xk−1∥

+αk|δk|∥xk−1 − xk−2∥
= ∥xk − x∗∥+ αk|θk|∥xk − xk−1∥+ αk|δk|∥xk−1 − xk−2∥.(3.7)
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By the conditions of {θk}, {δk}, it follows from Lemma 2.4, we obtain lim
k→∞

∥xk − x∗∥
exists. Since JG

rk is a firmly nonexpansive mapping then we have

∥xk+1 − x∗∥2 = ∥PE((1− αk)xk + αkJkyk)− x∗∥2

≤ (1− αk)∥xk − x∗∥2 + αk∥Jkyk − x∗∥2

≤ (1− αk)∥xk − x∗∥2 + αk[∥yk − rkFyk − x∗ + rkFx∗∥2

−∥yk − rkFyk − Jkyk − x∗ + rkFx∗ + Jkx∗∥2]
= (1− αk)∥xk − x∗∥2 + αk[∥yk − x∗ − rk(Fyk + Fx∗)∥2

−∥yk − x∗ − rk(Fyk − Fx∗)− Jkyk∥2]
= (1− αk)∥xk − x∗∥2 + αk[∥yk − x∗∥2 − 2rk⟨yk − x∗,Fyk + Fx∗⟩

+(rk)2∥Fyk − Fx∗∥2]− αk∥yk − rk(Fyk − Fx∗)− Jkyk∥2

≤ (1− αk)∥xk − x∗∥2 + αk∥yk − x∗∥2 − αk(rk)2∥Fyk − Fx∗∥2

−2ηαkrk∥Fyk − Fx∗∥2 − αk∥yk − rk(Fyk − Fx∗)− Jkyk∥2

= (1− αk)∥xk − x∗∥2 + αk∥xk + θk(xk − xk−1) + δk(xk−1 − xk−2)2

−αkrk(2η − rk)∥Fyk − Fx∗∥2 − αk∥yk − rk(Fyk − Fx∗)− Jkyk∥2

≤ (1− αk)∥xk − x∗∥2 + αk∥xk − x∗∥2 + 2αk⟨θk(xk − xk−1)

+δk(xk−1 − xk−2), yk − x∗⟩ − αkrk(2η − rk)∥Fyk − Fx∗∥2

−αk∥yk − rk(Fyk − Fx∗)− Jkyk∥2

= ∥xk − x∗∥2 + 2αk⟨θk(xk − xk−1) + δk(xk−1 − xk−2), yk − x∗⟩
−αkrk(2η − rk)∥Fyk − Fx∗∥2 − αk∥yk − rk(Fyk − Fx∗)− Jkyk∥2.

This implies that

∥xk − x∗∥2 − ∥xk+1 − x∗∥2 + 2αk⟨θk(xk − xk−1) + δk(xk−1 − xk−2), yk − x∗⟩
≥ αkrk(2η − rk)∥Fyk − Fx∗∥2 + αk∥yk − rk(Fyk − Fx∗)− Jkyk∥2.(3.8)

Again by the conditions of the sequences {θk}, {δk}, conditions (i)− (ii), and (3.8), we
have

lim inf
k→∞

∥Fyk − Fx∗∥ = lim inf
k→∞

∥yk − Jkyk − rk(Fyk − Fx∗)∥ = 0.

This gives, by the triangle inequality, that

lim inf
k→∞

∥yk − Jkyk∥ = 0.(3.9)

Since lim inf
k→∞

rk > 0, there is r > 0 such that rk > r. Lemma 2.2 (ii), we obtain

lim
k→∞

∥yk − JG
r (I − rF)yk∥ ≤ lim

k→∞
∥yk − Jkyk∥ = 0.

On the other hand,

∥yk − xk∥ ≤ |θk|∥xk − xk−1∥+ |δk|∥xk−1 − xk−2∥.(3.10)

Since {xk} is bounded, we can let x∗ be a week sequential cluster point of {xk}. By
(3.10), we have x∗ is also a weak sequential cluster point of {yk}. Using Lemma 2.2 (i) and
Lemma 2.1, we get that x∗ ∈ Fix(JG

r (I − rF)) = (F+ G)−1(0) ∩ E. Since xk is a sequence
in E and E is closed, it follows that x∗ ∈ (F + G)−1(0) ∩ E. By utilizing Opial’s Lemma
(Lemma 2.3), we can obtain that {xk} weakly converges to an element (F+G)−1(0)∩E. □
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Remark 3.1. Our Algorithm 3.0.1 can be reduced to following algorithms;
(i) if δk = 0, we have

yk = xk + θk(xk − xk−1),

xk+1 = PE((1− αk)xk + αkJkyk),

(ii) if θk = 0,

yk = xk + δk(xk−1 − xk−2),

xk+1 = PE((1− αk)xk + αkJkyk),

(iii) if δk = 0 and θk = 0,

yk = xk,

xk+1 = PE((1− αk)xk + αkJkyk),

(iv) if αk = 1,

yk = xk + θk(xk − xk−1) + δk(xk−1 − xk−2),

xk+1 = PE(J
kyk),

(v) if δk = 0 and αk = 1,

yk = xk + θk(xk − xk−1),

xk+1 = PE(J
kyk),

(vi) if θk = 0 and αk = 1,

yk = xk + δk(xk−1 − xk−2),

xk+1 = PE(J
kyk).

For supporting our main theorem, we now give an example in infinitely dimensional

spaces L2[0, 1] such that ∥.∥ is L2-norm defined by ∥x∥ =
√∫ 1

0
|x(t)|2dt where x(t) ∈

L2[0, 1].

Example 3.1. Let H = L2[0, 1] and E = {x(t) ∈ L2[0, 1] :
∫ 1

0
x(t)dt < ∞}. Define map-

pings as follow:
(i) multi-valued monotone operator G : L2[0, 1] → L2[0, 1] by Gx(t) = 2x(t), ∀x(t) ∈

L2[0, 1];
(ii) single-valued operator F : L2[0, 1] → L2[0, 1] by Fx(t) = 3x(t), ∀x(t) ∈ L2[0, 1].

We can choose x−1 = t+sin(t)
2 , x0 = sin(t)

2 and x1 = sin(t). We use the Cauchy error
∥xk − xk−1∥2 < 10−4 for the stopping criterion. The performances of our algorithm are
divided into four cases.

Case I: Comparing the proposed algorithm with various parameters θk are shown
when we choose δk = 0.3, rk = 0.2, and αk = k

k+1 . The following is a presentation of
the results:

Table 1: Numerical results of different parameters θk.
θk 0.1 0.3 0.5 0.7 0.9

No. of Iter. 7 7 7 7 6
CPU time(s) 6.4786 3.8913 4.1616 3.9251 3.3462
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Figure 1: The Cauchy error plotting of Algorithm 3.0.1 for different parameters θk.

Case II: Comparing the proposed algorithm with various parameters δk are shown
when we choose θk = 0.9, rk = 0.2, and αk = k

k+1 . The following is a presentation of the
results:

Table 2: Numerical results of different parameters δk.
δk 0.1 0.3 0.5 0.7 0.9

No. of Iter. 6 6 10 10 10
CPU time(s) 4.2234 0.4284 5.6592 5.5733 5.5322
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Figure 2: The Cauchy error plotting of Algorithm 3.0.1 for different parameters δk.
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Case III: Comparing the proposed algorithm with various parameters rk are shown
when we choose θk = 0.9, δk = 0.3, and αk = k

k+1 . The following is a presentation of the
results:

Table 3: Numerical results of different parameters rk.
rk 0.1 0.2 0.4 0.6 0.8

No. of Iter. 8 6 6 6 5
CPU time(s) 0.5937 0.3546 0.3323 0.2833 0.2633
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Figure 3: The Cauchy error plotting of Algorithm 3.0.1 for different parameters rk.

Case IV: Comparing the proposed algorithm with various parameters αk are shown by
choosing θk = 0.9, δk = 0.3, and rk = 0.8. The following is a presentation of the results:

Table 4: Numerical results of different parameters αk.
αk k

k+1
k

2k+1
k

5k+1
k

10k+1
k

100k+1

No. of Iter. 5 8 11 16 2
CPU time(s) 0.2844 5.6785 7.3718 10.5273 0.9668
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Figure 4: The Cauchy error plotting of Algorithm 3.0.1 for different parameters αk.

From Tables 1-4 and Figures 1-4, it is evident that in all four cases mentioned, selecting
the parameters θk = 0.9, δk = 0.3, rk = 0.8, and αk = k

100k+1 provides the most favourable

results when initializing with x−1 = t+sin(t)
2 , x0 = sin(t)

2 , and x1 = sin(t).

4. APPLICATION

The WHO South-East Asia Region demonstrates a steadfast commitment to enhanc-
ing healthcare services, mainly focusing on preventing, treating, and managing strokes,
alongside providing excellent rehabilitative care tailored to individuals coping with stroke-
related disabilities. On a global scale, stroke ranks as the second leading cause of death
and the third most significant contributor to the burden of disability. Notably, one in four
people worldwide faces the potential risk of experiencing a stroke during their lifetime.

Lifestyle factors contributing to stroke susceptibility include conditions such as obesity,
sedentary lifestyles, tobacco use, and excessive alcohol consumption. On the medical
front, risk factors include elevated blood pressure, high cholesterol levels, diabetes, and
a complex interplay of personal or familial factors, including prior strokes or myocardial
infarctions.

A concerning 70% of stroke cases concentrate within low- and middle-income coun-
tries, which consequently account for 87% of the total count of stroke-induced fatalities
and years of life constrained by disability. To address this disparity, the WHO actively
supports all constituent nations within the regional scope. Central to their mission is as-
sisting these nations in identifying and implementing prudent ”best buy” interventions,
effectively reducing stroke vulnerability and broadening the availability and accessibility
of exemplary stroke-focused services [26].

The investigation utilized a dataset to predict stroke, which was made available via the
Kaggle website [20]. This dataset comprises a structured arrangement of 5110 rows and
12 columns. The ”stroke” column is particularly significant, functioning as the dependent
variable, with binary values of 1 or 0. A value of 1 signifies the presence of an associated
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stroke risk, while a value of 0 indicates the absence of such a risk. In the ”stroke” col-
umn, 249 rows hold 1, while 4861 rows hold 0. To improve methodology, meticulous data
preprocessing balances the dataset. A comprehensive analysis is presented in Table 1.

Data preprocessing plays a crucial role in the initial stages of model building as it helps
remove unwanted missing and outliers from the dataset. This process aims to improve
the quality of training outcomes by addressing factors that could hinder the model’s effi-
ciency. Once a suitable dataset is collected, the next step involves data cleaning to ensure
its suitability for model construction. Initially, we exclude the id column as it has minimal
relevance to the model building process. Subsequently, we carefully examine the dataset
to identify and correct any null values encountered. In this case, the column bmi has null
values filled with the mean of the column data. We remove null values from the data set
before applying the data to classify the data.
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Table 1: Stroke dataset attributes information.
Attribute Name Definitions and Encoding
id Patient ID

Input
gender Gender of Patient:

1 := Male
2 := FeMale
3 := Other

age Age of Patient
hypertension 0 := no hypertension

1 := suffering from hypertension
heart disease 0 := no heart disease

1 := suffering from heart disease
ever married 1:=Yes

2:=No
work type 0:=children

1 := Govt jov
2 := Never worked
3 := Private
4 := Self-employed

Residence type 1:=Rural
2 := Urban

avg glucose level average glucose level in blood
bmi body mass index
smoking status 0 := formerly smoked

1 := never smoked
2 := smokes
3 := Unknown

Output
stroke 0 := no stroke

1 := suffered stroke

In this study, our focus is on extreme learning machine (ELM) [14] applied to single-
hidden layer feedforward neural networks (SLFNs), which are defined as follows:

Let xn = [x1, x2, ..., xN ]T ∈ Rn is an input training data and tn = [t1, t2, ..., tN ]T ∈ Rm

is a target, standard SLFNs with M hidden nodes. Assume that activation function A is

Oj =

M∑
i=1

φiA(⟨ωi, xj⟩+ bi)

where φi is the optimal output weight at the i-th hidden node, ωi is weight, and bi is bias.
The hidden layer output matrix H is generated as follows:

H =

 A(⟨ω1, x1⟩+ b1) · · · A(⟨ωM, x1⟩+ bM)
...

. . .
...

A(⟨ω1, xN ⟩+ b1) · · · A(⟨ωM, xN ⟩+ bM)


The main goal of ELM is to determine the optimal output weight vector, denoted as φ =

[φ1T , φ2T , ..., φMT
]T , that satisfies the equation Hφ = T . Here, T = [t1

T
, t2

T
, ..., tN

T
]T

represents the training target data. However, a challenge arises in obtaining the solution
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φ = H‡T , where H‡ denotes the Moore-Penrose generalized inverse of H, can be chal-
lenging if the matrix H does not exist. Consequently, resolving this issue through convex
minimization allows us to find a solution for φ.

In the section, we will thoroughly review pertinent experimental trials for our classi-
fication problem. We can apply Algorithm 3.0.1 by considering it within two problem
models, as follows:

(i) The regularization of least square problem (RLSP): for λ > 0

(4.11) min
φ∈RM

{1

2
∥Hφ− T ∥22 + λ∥φ∥1

}
.

The problem in equation (4.11), known as the least absolute shrinkage and selection op-
erator (LASSO), was introduced by Tibshirani [28]. Our Algorithm 3.0.1 addresses this
problem with the setting operators: F(φ) ≡ ∇( 12∥Hφ− T ∥22) and G(φ) ≡ ∂(λ∥φ∥1).

(ii) The regularization of least square problem with constrained by closed convex set
(RLSPC): for λ, µ > 0

(4.12) min
φ∈E

{1

2
∥Hφ− T ∥22 + λ∥φ∥1

}
.

where E = {φ : ∥φ∥22 ≤ µ}. Our Algorithm 3.0.1 addresses this problem with the setting
operators: F(φ) ≡ ∇( 12∥Hφ− T ∥22) and G(φ) ≡ ∂(λ∥φ∥1).

The study emphasises assessing crucial performance metrics: accuracy, precision, re-
call, and F1-score [29]. These metrics are determined by considering specific values, such
as true negatives (TN), false positives (FP), false negatives (FN), and true positives (TP).

Accuracy =
TP + TN

TP + TN + FP + FN
× 100%;

Precision =
TP

TP + FP
× 100%;

Recall =
TP

TP + FN
× 100%;

F1− score =
2× (Precision×Recall)

(Precision+Recall)
.

The standard binary cross entropy loss function [13] is the cross entropy loss when only
two classes are involved. We can calculate the loss by calculating the following mean:

Loss = − 1

n

n∑
i=1

γi log γ̂i + (1− γi) log(1− γ̂i),

where n is the number of training examples, γi is target label for training example i-th,
and γ̂i is model with neural network weights i-th.

This paper is focused on the exclusive use of the training dataset. Before constructing
the model, the dataset underwent a trisection, creating two distinct subsets: a training set
encompassing 70% of the dataset and a complementary test set containing the remaining
30%. The computational process commences with configuring the activation function
as sigmoid, concurrently involving the implementation of M = 150 hidden nodes. The
stopping criteria is the number of iteration 900. After this, a performance assessment
is conducted to compare the effectiveness of the algorithm we studied with the other
algorithms mentioned above. This assessment is conducted meticulously, adhering to the
parameters in Table 2.
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Table 2: Chosen parameters of each algorithm.
Algorithm rk θk δk αk λ µ
IPA 1.9999

∥H∥2
1

∥xk−xk−1∥5+k5 - - 10−5 -
SIPA 1.9999

∥H∥2
1

∥xk−xk−1∥6+k6 - - 10−5 -
TSIPA 1.9999

∥H∥2
1

∥xk−xk−1∥3+k3
1

∥xk−xk−1∥3+k3 1 10−5 -

Algorithm 3.0.1(RLSP) 0.3
∥H∥2

215

∥xk−xk−1∥3+k3+215
215

∥xk−xk−1∥3+k3+215
0.9k
k+1 10−5 -

Algorithm 3.0.1(RLSPC) 0.5
∥H∥2

215

∥xk−xk−1∥3+k3+215
215

∥xk−xk−1∥3+k3+215
0.9k
k+1 10−5 9

Algorithm 3.0.1-(i)(RLSPC) 1.9999
∥H∥2

1
∥xk−xk−1∥5+k5 0 0.9999 10−5 4

Algorithm 3.0.1-(ii)(RLSC) 1.9999
∥H∥2 0 1

∥xk−xk−1∥6+k6 0.9999 10−5 4
Algorithm 3.0.1-(iii)(RLSPC) 1.9999

∥H∥2 0 0 0.9999 10−5 25

Algorithm 3.0.1-(iv)(RLSPC) 0.3
∥H∥2

212

∥xk−xk−1∥3+k3+212
215

∥xk−xk−1∥3+k3+215
1 10−5 9

Algorithm 3.0.1-(v)(RLSPC) 1.9999
∥H∥2

1
∥xk−xk−1∥5+k5 0 1 10−4 4

Algorithm 3.0.1-(vi)(RLSPC) 1.9999
∥H∥2 0 1

∥xk−xk−1∥6+k6 1 10−4 9

Table 3: The performance of each algorithm.
Algorithm Training Time Precision Recall F1-score Accuracy
IPA 0.0206 96.37 97.94 97.15 94.50
SIPA 0.0193 95.90 99.50 97.67 95.45
TSIPA 0.0235 98.06 82.34 89.51 81.53
Algorithm 3.0.1(RLSP) 0.0271 95.85 99.93 97.85 95.79
Algorithm 3.0.1(RLSPC) 0.0196 95.85 99.93 97.85 95.79
Algorithm 3.0.1-(i)(RLSPC) 0.0197 95.72 99.93 97.78 95.66
Algorithm 3.0.1-(ii)(RLSPC) 0.0192 95.72 100.00 97.81 95.72
Algorithm 3.0.1-(iii)(RLSPC) 0.0206 95.72 100.00 97.81 95.72
Algorithm 3.0.1-(iv)(RLSPC) 0.0206 95.72 99.93 97.78 95.66
Algorithm 3.0.1-(v)(RLSPC) 0.1375 95.72 100.00 97.81 95.72
Algorithm 3.0.1-(vi)(RLSPC) 0.0189 95.72 100.00 97.81 95.72

Table 3 shows that the algorithms we study have the highest efficiency in accuracy,
recall, and F1-score. It has the highest probability of correctly classifying stroke compared
to the mentioned algorithms.

The performance results of the methods used in the literature with the same data set.
This study was compared to the literature [24] in terms of accuracy, precision, recall, and
F1-score. The literature [24] used machine learning algorithms such as Logistic Regres-
sion, Decision Tree Classification, Random Forest Classification, K-Nearest Neighbors
(KNN), Support Vector Machine (SVM), and Naı̈ve Bayes Classification. A meticulous
dataset division into discrete training and testing subsets was enacted in data preprocess-
ing. This division entailed an allocation of 80% for training data and an accompanying
20% for testing data. The resultant outcomes of these rigorous analytical endeavours are
systematically showcased in Table 4.
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Table 4: The performance of ML algorithms.
Algorithm Precision Recall F1-score Accuracy
Logistic Regression 77.50 77.60 77.60 78.00
Decision Tree Classification 77.50 77.50 77.60 66.00
Random Forest Classification 72.00 73.50 72.70 73.00
K-Nearest Neighbors (KNN) 77.40 83.70 80.40 80.00
Support Vector Machine (SVM) 78.60 83.80 81.10 80.00
Naive Bayes Classification 79.20 85.70 82.30 82.00
Algorithm 3.0.1(RLSP) 95.85 99.93 97.85 95.79
Algorithm 3.0.1(RLSPC) 95.85 99.93 97.85 95.79

Table 4 shows that of all the algorithms chosen on the stroke dataset. The Algorithm
3.0.1(RLSP) and Algorithm 3.0.1(RLSPC) performs best with an accuracy of 95.79%. Our
Algorithm 3.0.1(RLSP) and Algorithm 3.0.1(RLSPC) also achieved the highest precision,
recall, and F1-score compared to the literature [24].
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Figures 5-6: Accuracy and Loss graph of the Algorithm 3.0.1(RLSP).
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Figures 7-8: Accuracy and Loss graph of the Algorithm 3.0.1(RLSPC).
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Figures 9-10: Accuracy and Loss graph of the Algorithm 3.0.1-(i)(RLSPC).
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Figures 11-12: Accuracy and Loss graph of the Algorithm 3.0.1-(ii)(RLSPC).
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Figures 13-14: Accuracy and Loss graph of the Algorithm 3.0.1-(iii)(RLSPC).
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Figures 15-16: Accuracy and Loss graph of the Algorithm 3.0.1-(iv)(RLSPC).
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Figures 17-18: Accuracy and Loss graph of the Algorithm 3.0.1-(v)(RLSPC).
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Figures 19-20: Accuracy and Loss graph of the Algorithm 3.0.1-(vi)(RLSPC).
From Figures 5-20, we can see that Training Loss and Validation Loss consistently de-

crease until it will remain constant at some point. The two graphs have very little gaps
between them. The recognition that the algorithms we study function as an appropri-
ately good fitting model implies its adeptness in effectively acquiring knowledge from
the training dataset.

5. CONCLUSIONS

We have suggested a two inertial technique with a projection Mann forward-backward
splitting algorithm for finding solutions of variational inclusion problems in Hilbert spaces.
Weak convergence result for the proposed method was established under some mild con-
ditions. We provide a numerical example in infinitely dimensional spaces to support the
main result. Moreover, we applied our findings to predict occurrences of stroke. The cre-
ation of a machine learning algorithm has the potential to enable the early anticipation of
strokes, thus mitigating their potentially significant consequences. Our algorithm is based
on the fundamental principles of the extreme learning machine model, which has been
carefully tailored to excel in classification tasks. Finally, we show the performance of our
algorithm by comparing it with the other three algorithms and the literature mentioned.
These results show our algorithm is better than the three algorithms and literature.
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