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Modified inertial Tseng type method for zeros of the sum of
monotone operators in Hilbert spaces

NARIN PETROT1,2, MANATCHANOK KHONCHALIEW3 and MONTIRA SUWANNAPRAPA4

ABSTRACT. In this work, we propose a modified inertial Tseng type method for finding a solution to the
monotone inclusion problem in Hilbert spaces. The strong convergence of the algorithm is guaranteed by suffi-
cient conditions on the control sequences of related parameters. The forms of proposed algorithms for solving
some important applications of the monotone inclusion problem models are provided. Also, the numerical
experiments of the proposed algorithm are discussed.

1. INTRODUCTION

Let H be a real Hilbert space and let B : H → 2H be a set-valued operator. The
variational inclusion problem, which was introduced by Martinet [18], is the problem of
finding a point x∗ ∈ H such that

0 ∈ Bx∗.(1.1)

If B is a maximal monotone operator, the elements in the solution set of the problem (1.1)
are called the zeros of a maximal monotone operator. The variational inclusion prob-
lems are being used as mathematical programming models to study a large number of
optimization problems that arise in finance, economics, network, transportation, and en-
gineering science. For solving the problem (1.1), many authors considered the following
proximal point method: for a given x1 ∈ H ,

xn+1 = JB
λn

xn, ∀n ∈ N,(1.2)

where {λn} ⊂ (0,∞) and JB
λn

= (I + λnB)−1 is the resolvent of the maximal monotone
operator B corresponding to λn; see [12, 19, 33, 36] for more information.

A type of generalization of (1.1) is the following inclusion problem: finding a point
x∗ ∈ H such that

0 ∈ Ax∗ +Bx∗,(1.3)

where A : H → H is a single-valued operator and B : H → 2H is a set-valued operator.
The elements in the solution set of the monotone inclusion problem (1.3) are called the
zeros of the sum of monotone operators; see [6, 8, 20, 25, 32] and the references therein.
Note that, when A is a continuous and monotone operator and B is a maximal monotone
operator, we have A + B is a maximal monotone operator; see [26]. A popular itera-
tive method for solving the problem (1.3) is the so-called the forward-backward splitting
method, which defines a sequence {xn} by the following algorithm: for any x1 ∈ H ,

xn+1 = JB
λn

(I − λnA)xn, ∀n ∈ N,(1.4)
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where {λn} is a sequence of positive real numbers, A : H → H and B : H → 2H are
maximal monotone operators, see Passty [22].

Furthermore, the study of the inertial technique was first presented by Polyak in 1964,
to speed up the rate of convergence; see [24]. This technique is a two-step iterative
method, in which each iteration involves the previous two iterates. Consequently, many
authors considered the inertial method because of this faster convergence rate property
of the algorithm; see [1, 4, 9, 10, 11, 14, 23, 27] for more information.

In 2001, Alvarez and Attouch [3] proposed the inertial proximal point method for find-
ing the solution of the problem (1.1): for arbitrary x0, x1 ∈ H ,

yn = xn + µn(xn − xn−1),

xn+1 = JB
λn

yn, ∀n ∈ N,(1.5)

where {λn} is non-decreasing sequence and {µn} ⊂ [0, 1) satisfy with
∑∞

n=1 µn∥xn −
xn−1∥2 < ∞, and presented the weakly convergence results.

In 2015, Lorenz and Pock [16] studied the monotone inclusion problem (1.3) and pro-
posed the following inertial forward-backward algorithm: for arbitrary x0, x1 ∈ H ,

yn = xn + µn(xn − xn−1),

xn+1 = JB
λn

(I − λnA)yn, ∀n ∈ N,(1.6)

where {λn} is a positive real sequence and {µn} ⊂ [0, 1). By suitable conditions, they
proved that the sequence {xn} converges weakly to a solution of the problem (1.3).

In 2018, Cholamjiak et al. [9] proposed the Halpern type inertial forward-backward
method for solving the problem (1.3): for arbitrary u, x0, x1 ∈ H ,

yn = xn + µn(xn − xn−1),

xn+1 = αnu+ βnyn + γnJ
B
λn

(I − λnA)yn, ∀n ∈ N,(1.7)

where {µn} ⊂ [0, µ) with µ ∈ [0, 1), the sequences {αn}, {βn} and {γn} are in (0, 1) and
some suitable conditions. They proved that the sequence {xn} converges strongly to a
solution of the problem (1.3).

On the other hand, in 2000, Tseng [32] proposed a modified forward-backward splitting
method for solving the problem (1.3), also known as Tseng’s splitting algorithm: let C ⊆
H be closed and convex set which intersects the solution set of (1.3), for any x1 ∈ C,

yn = JB
λn

(I − λnA)xn,

xn+1 = PC

(
yn − λn(Ayn −Axn)

)
, ∀n ∈ N,(1.8)

where λn is chosen to be the largest λ ∈ {δ, δl, δl2, . . . } satisfying λ∥Ayn −Axn∥ ≤ µ∥yn −
xn∥, when δ > 0 and l, µ ∈ (0, 1). Tseng proved that the sequence {xn} converges weakly
to the zeros of A + B. Subsequently, the study of the strong convergence methods with
Tseng’s splitting algorithm for the problem (1.3) are studied; see [2, 13, 14, 28] for more
details.

In [14], Kaewyong and Sitthithakerngkiet studied the monotone inclusion problem
(1.3). They introduced the following modified Tseng type algorithm: for arbitrary x0,
x1 ∈ H ,

zn = xn + µn(xn − xn−1),

wn = JB
λn

(I − λnA)zn,

yn = wn − λn(Awn −Azn),

xn+1 = αn∇h(xn) + (1− αn)yn, ∀n ∈ N,(1.9)
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where {αn} is a sequence in (0, 1) satisfy limn→∞ αn = 0 and
∑∞

n=1 αn = ∞, ∇h : H → H
is σ-Lipschitz continuous with σ ∈ [0, 1), {µn} ⊂ [0, 1) and {λn} is defined by

λn+1 =

min

{
θ∥zn−wn∥

∥Azn−Awn∥ , λn

}
, if Azn −Awn ̸= 0;

λn, otherwise,

when λ1 > 0 and θ ∈ (0, 1). They showed that if the sequence {µn} ∈ [0, 1) such that
limn→∞

µn

αn
∥xn−xn−1∥ = 0 and limn→∞ µn∥xn−xn−1∥ = 0, then the generated sequence

{xn} converges strongly to a solution point of the problem (1.3).

In this paper, motivated and inspired by the above literature and the presented algo-
rithm in [14], we are going to consider problem (1.3) by aiming to provide the modified
inertial Tseng type algorithms for finding a solution of the problem and provide some
suitable conditions to guarantee that the constructed sequence {xn} converges strongly to
a solution point.

2. PRELIMINARIES

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and its induced norm ∥ · ∥.
For a sequence {xn} in H , we denote the strong convergence and weak convergence of
the sequence {xn} to x by xn → x and xn ⇀ x, respectively.

Let T : H → H be a mapping. Then T is said to be

(i) Lipschitz if there exists L ≥ 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ H.

The number L, associated with T , is called a Lipschitz constant. Moreover, if L ∈ [0, 1),
we say that T is contraction. And, if L = 1, we say that T is nonexpansive.

(ii) Firmly nonexpansive if

∥Tx− Ty∥2 ≤ ⟨x− y, Tx− Ty⟩, ∀x, y ∈ H.

(iii) β-inverse strongly monotone (β-ism) if for a positive real number β,

⟨Tx− Ty, x− y⟩ ≥ β∥Tx− Ty∥2, ∀x, y ∈ H.

The set of fixed points of a self-mapping T will be denoted by F (T ), that is F (T ) =
{x ∈ H : Tx = x}. We note that if T is nonexpansive, then F (T ) is closed and convex.

Now, we collect some important properties for our proof.

Lemma 2.1. [6, 34] The following are true:
(i) If A : H → H is β-ism, then A is 1

β -Lipschitz continuous and monotone mapping.
(ii) If A : H → H is β-ism and λ ∈ (0, β], then T := I − λA is firmly nonexpansive.

Let B : H → 2H be a set-valued mapping. The effective domain of B is denoted by
D(B), that is, D(B) = {x ∈ H : Bx ̸= ∅}. Recall that B is said to be monotone if

⟨x− y, u− v⟩ ≥ 0, ∀x, y ∈ D(B), u ∈ Bx, v ∈ By.

A monotone mapping B is said to be maximal if its graph is not properly contained in the
graph of any other monotone operator. To a maximal monotone operator B : H → 2H

and λ > 0, its resolvent JB
λ is defined by

JB
λ := (I + λB)−1 : H → D(B).
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Notice that the resolvent JB
λ is a single-valued and firmly nonexpansive mapping, and

F (JB
λ ) = B−10 ≡ {x ∈ H : 0 ∈ Bx}, ∀λ > 0; see [29, 30].

Lemma 2.2. [5] Let C be a nonempty, closed, and convex subset of a real Hilbert space H and
A : C → H be an operator. If B : H → 2H is a maximal monotone operator, then F

(
JB
λ (I −

λA)
)
= (A+B)−10.

The following known results are needed in our proof.

For each x, y, z ∈ H , the following facts are valid for inner product spaces,

∥αx+ (1− α)y∥2 = α∥x∥2 + (1− α)∥y∥2 − α(1− α)∥x− y∥2,(2.10)

and

∥αx+ βy + γz∥2 = α∥x∥2 + β∥y∥2 + γ∥z∥2

−αβ∥x− y∥2 − αγ∥x− z∥2 − βγ∥y − z∥2,(2.11)

for any α, β, γ ∈ [0, 1] such that α+ β + γ = 1; see [21, 29].

Let C be a nonempty closed convex subset of H . For a point x ∈ H , there exists a
unique nearest point in C, denoted by PCx, such that

∥x− PCx∥ ≤ ∥x− y∥, ∀y ∈ C.

PC is called a metric projection of H onto C; see [31]. The following property of PC is well
known and useful:

⟨x− PCx, y − PCx⟩ ≤ 0, ∀x ∈ H, y ∈ C.

We also use the following lemma for proving the main theorems.

Lemma 2.3. [15, 33] Let {an} be a sequence of nonnegative real numbers satisfying the following
relation:

an+1 ≤ (1− αn)an + αnbn + cn, ∀n ∈ N,
where {αn}, {bn} and {cn} are sequences of real numbers satisfying

(i) {αn} ⊂ [0, 1],
∑∞

n=1 αn = ∞;
(ii) lim supn→∞ bn ≤ 0;
(iii) cn ≥ 0, for each n ∈ N,

∑∞
n=1 cn < ∞.

Then, an → 0 as n → ∞.

3. MAIN RESULTS

In this section, we start by introducing the following algorithm that combines the in-
ertial method with Tseng type and viscosity type algorithm for solving the monotone
inclusion problem, the problem (1.3).

Algorithm 3.1. Let {αn}, {βn} and {δn} be sequences in (0, 1) with αn + βn + δn = 1 and the
initial x0, x1 ∈ H be arbitraries, define

zn = xn + µn(xn − xn−1),

wn = JB
λn

(I − λnA)zn,

yn = wn − λn(Awn −Azn),

xn+1 = αnf(xn) + βnxn + δnyn, ∀n ∈ N,(3.12)

where {µn} ⊂ [0, µ) with µ ∈ [0, 1) and {λn} is defined by

λn+1 =

min

{
θ∥zn−wn∥

∥Azn−Awn∥ , λn

}
, if Azn −Awn ̸= 0;

λn, otherwise,
(3.13)
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when λ1 > 0 and θ ∈ (0, 1).

We will consider the Algorithm 3.1 under the following assumptions.

(A1) A : H → H is a ν-Lipschitz continuous and monotone operator;
(A2) B : H → 2H is a maximal monotone operator;
(A3) f : H → H is a contraction mapping with coefficient κ ∈ [0, 1).

We denote Ω := (A+B)−10 for the solution set of the problem (1.3) and assume that Ω
is nonempty.

Now, we will present Lemmas and the strong convergence theorem (Theorem 3.1), by
using the above assumptions to Algorithm 3.1.

Lemma 3.4. The sequence {λn} generated by (3.13) is a non-increasing sequence and

lim
n→∞

λn = λ ≥ min

{
λ1,

θ

ν

}
.

Proof. By the definition of {λn} in (3.13), it follows immediately that the sequence {λn}

is non-increasing. Moreover, Azn − Awn ̸= 0 implies
θ∥zn − wn∥

∥Azn −Awn∥
≥ θ

ν
. Therefore, it is

obvious that {λn} has a lower bound min

{
λ1,

θ

ν

}
. This completes the proof. □

Lemma 3.5. Let H be a real Hilbert space and let {yn} be a sequence which is appeared in Algo-
rithm 3.1. If assumptions (A1)-(A3) hold, then

∥yn − p∥2 ≤ ∥zn − p∥2 −
(
1− θ2

λ2
n

λ2
n+1

)
∥zn − wn∥2,(3.14)

for all p ∈ Ω and

∥yn − wn∥ ≤ θ
λn

λn+1
∥zn − wn∥.(3.15)

Proof. By the choice of {λn} in (3.13), if Azn ̸= Awn, we have

λn+1 = min

{
θ∥zn − wn∥

∥Azn −Awn∥
, λn

}
≤ θ∥zn − wn∥

∥Azn −Awn∥
,

for each n ∈ N. This implies that

∥Azn −Awn∥ ≤ θ∥zn − wn∥
λn+1

.(3.16)

Note that, in fact (3.16) holds for all n ∈ N.
Now, consider

∥yn − p∥2 = ∥wn − λn(Awn −Azn)− p∥2

= ∥wn − p∥2 + λ2
n∥Awn −Azn∥2 − 2λn⟨wn − p,Awn −Azn⟩

= ∥zn − p∥2 + ∥zn − wn∥2 + 2⟨wn − zn, zn − p⟩
+λ2

n∥Awn −Azn∥2 − 2λn⟨wn − p,Awn −Azn⟩
= ∥zn − p∥2 − ∥zn − wn∥2 + 2⟨wn − zn, wn − p⟩

+λ2
n∥Awn −Azn∥2 − 2λn⟨wn − p,Awn −Azn⟩

= ∥zn − p∥2 − ∥zn − wn∥2 − 2
〈
zn − wn − λn(Azn −Awn), wn − p

〉
+λ2

n∥Awn −Azn∥2,(3.17)
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for each n ∈ N. By using (3.16), we obtain

∥yn − p∥2 = ∥zn − p∥2 −
(
1− θ2

λ2
n

λ2
n+1

)
∥zn − wn∥2

−2
〈
zn − wn − λn(Azn −Awn), wn − p

〉
.(3.18)

Next, we will show that
〈
zn − wn − λn(Azn − Awn), wn − p

〉
≥ 0. Note that, wn =

(I + λnB)−1(I − λnA)zn, implies (I − λnA)zn ∈ (I + λnB)wn. Since B is a maximal
monotone operator, there exists vn ∈ Bwn such that (I − λnA)zn = wn + λnvn. This gives

vn =
1

λn
(zn − wn − λnAzn).(3.19)

Furthermore, since 0 ∈ (A+B)p and Awn+vn ∈ (A+B)wn, together with the maximality
of A+B, we get

⟨Awn + vn, wn − p⟩ ≥ 0.(3.20)

Substituting (3.19) into (3.20), we obtain
1

λn
⟨zn − wn − λnAzn + λnAwn, wn − p⟩ ≥ 0.

So, 〈
zn − wn − λn(Azn −Awn), wn − p

〉
≥ 0.

Thus, from (3.18), we have

∥yn − p∥2 ≤ ∥zn − p∥2 −
(
1− θ2

λ2
n

λ2
n+1

)
∥zn − wn∥2,

for each n ∈ N.
In addition, by using (3.16), we obtain

∥yn − wn∥ = ∥wn − λn(Awn −Azn)− wn∥
≤ λn∥Awn −Azn∥

≤ θ
λn

λn+1
∥zn − wn∥,

for each n ∈ N. This completes the proof. □

Theorem 3.1. Let H be a real Hilbert space and let {xn} be generated by Algorithm 3.1. Suppose
that the assumptions (A1)-(A3) hold and the following control conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) There exist a positive real number a with 0 < a ≤ βn and 0 < a ≤ δn, for each n ∈ N;
(C3) limn→∞

µn

αn
∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ Ω, where p = PΩf(p).

Proof. Firstly, we show that the sequence {xn} is bounded. Let z ∈ Ω. Then, we have
z ∈ (A+B)−10, and this implies that JB

λn
(I − λnA)z = z.

Since limn→∞

(
1− θ2

λ2
n

λ2
n+1

)
= 1− θ2 > 0, there exists n0 ∈ N such that

1− θ2
λ2
n

λ2
n+1

> 0,(3.21)

for each n ≥ n0. Thus, from (3.14), we have

∥yn − z∥ ≤ ∥zn − z∥,(3.22)
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for each n ≥ n0.
Next, by the definition of zn and the condition (C3), we obtain that for each n ≥ n0,

∥zn − z∥ =
∥∥xn + µn(xn − xn−1)− z

∥∥
≤ ∥xn − z∥+ µn∥xn − xn−1∥

= ∥xn − z∥+ αn
µn

αn
∥xn − xn−1∥

≤ ∥xn − z∥+ αnM1,(3.23)

for some M1 > 0. It follows by using (3.23) that

∥yn − z∥ ≤ ∥xn − z∥+ αnM1.(3.24)

By using (3.24) and the definition of xn+1, we have

∥xn+1 − z∥ =
∥∥αnf(xn) + βnxn + δnyn − z

∥∥
≤ αn

∥∥f(xn)− z
∥∥+ βn∥xn − z∥+ δn∥yn − z∥

≤ αn

∥∥f(xn)− f(z)
∥∥+ αn

∥∥f(z)− z
∥∥+ βn∥xn − z∥+ δn∥yn − z∥

≤ αnκ∥xn − z∥+ αn

∥∥f(z)− z
∥∥+ βn∥xn − z∥+ δn

(
∥xn − z∥+ αnM1

)
≤

(
αnκ+ βn + δn

)
∥xn − z∥+ αn

(∥∥f(z)− z
∥∥+M1

)
=

(
1− αn(1− κ)

)
∥xn − z∥+ αn(1− κ)

(∥∥f(z)− z
∥∥+M1

1− κ

)
≤ max

{
∥xn − z∥,

∥∥f(z)− z
∥∥+M1

1− κ

}
...

≤ max

{
∥xn0

− z∥,
∥∥f(z)− z

∥∥+M1

1− κ

}
,(3.25)

for each n ≥ n0. This means
{
∥xn − z∥

}
is a bounded sequence, and it follows that {xn}

is bounded. Subsequently, the sequences {zn}, {yn} and {f(xn)} are also bounded.

Next, we note that PΩf(·) is a contraction mapping. Let p be a unique fixed point of
PΩf(·), that is p = PΩf(p). For each n ≥ n0, we see that

∥zn − p∥2 =
∥∥xn + µn(xn − xn−1)− p

∥∥2
=

∥∥xn − p
∥∥2 + µ2

n∥xn − xn−1∥2 + 2µn⟨xn − p, xn − xn−1⟩

≤
∥∥xn − p

∥∥2 + µ2
n∥xn − xn−1∥2 + 2µn∥xn − p∥∥xn − xn−1∥.(3.26)
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By using (3.26), we have

∥xn+1 − p∥2 =
〈
αnf(xn) + βnxn + δnyn − p, xn+1 − p

〉
= αn

〈
f(xn)− f(p), xn+1 − p

〉
+ αn

〈
f(p)− p, xn+1 − p

〉
+βn

〈
xn − p, xn+1 − p

〉
+ δn

〈
yn − p, xn+1 − p

〉
≤ αn

2

(∥∥f(xn)− f(p)
∥∥2 + ∥∥xn+1 − p

∥∥2)
+
βn

2

(∥∥xn − p
∥∥2 + ∥∥xn+1 − p

∥∥2)
+
δn
2

(∥∥yn − p
∥∥2 + ∥∥xn+1 − p

∥∥2)
+αn

〈
f(p)− p, xn+1 − p

〉
≤

(
αnκ

2

2
+

βn

2

)
∥xn − p∥2 + δn

2

∥∥zn − p
∥∥2 + 1

2
∥xn+1 − p∥2

+αn

〈
f(p)− p, xn+1 − p

〉
≤

(
αnκ

2 + βn + δn
2

)
∥xn − p∥2 + 1

2
∥xn+1 − p∥2

+
δnµ

2
n

2
∥xn − xn−1∥2 + δnµn∥xn − p∥∥xn − xn−1∥

+αn

〈
f(p)− p, xn+1 − p

〉
,

for each n ≥ n0. Thus,

∥xn+1 − p∥2 ≤
(
1− αn(1− κ2)

)
∥xn − p∥2 + µ2

n∥xn − xn−1∥2

+2µn∥xn − p∥∥xn − xn−1∥+ 2αn

〈
f(p)− p, xn+1 − p

〉
=

(
1− αn(1− κ2)

)
∥xn − p∥2

+µn∥xn − xn−1∥
(
µn∥xn − xn−1∥+ 2∥xn − p∥

)
+2αn

〈
f(p)− p, xn+1 − p

〉
≤

(
1− αn(1− κ2)

)
∥xn − p∥2 +M2µn∥xn − xn−1∥

+2αn

〈
f(p)− p, xn+1 − p

〉
≤

(
1− αn(1− κ2)

)
∥xn − p∥2

+αn(1− κ2)

(
M2

1− κ2

µn

αn
∥xn − xn−1∥+

2

1− κ2

〈
f(p)− p, xn+1 − p

〉)
,(3.27)

where M2 = 3 supn
{
µ∥xn − xn−1∥, ∥xn − p∥

}
> 0.

Now, we consider the following two cases.

Case 1: Suppose that
{
∥xn − p∥

}
is monotonically non-increasing for all n ≥ n0. Since{

∥xn − p∥
}

is bounded, in this situation we can confirm that it is a convergent sequence.

Now, from (3.23) we have

∥zn − p∥2 =
(
∥xn − p∥+ αnM1

)2
= ∥xn − p∥2 + 2αnM1∥xn − p∥+ α2

nM
2
1

= ∥xn − p∥2 + αn

(
2M1∥xn − p∥+ αnM

2
1

)
= ∥xn − p∥2 + αnM3,(3.28)
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for each n ≥ n0, where M3 = supn
{
2M1∥xn − p∥+ αnM

2
1

}
> 0.

By using (2.11), (3.14) and (3.28), we obtain

∥xn+1 − p∥2 =
∥∥αnf(xn) + βnxn + δnyn − p

∥∥2
=

∥∥αn

(
f(xn)− p

)
+ βn(xn − p) + δn(yn − p)

∥∥2
= αn

∥∥f(xn)− p
∥∥2 + βn∥xn − p∥2 + δn∥yn − p∥2

−αnβn

∥∥f(xn)− xn

∥∥2 − αnδn
∥∥f(xn)− yn

∥∥2 − βnδn∥xn − yn∥2

≤ αn

∥∥f(xn)− p
∥∥2 + βn∥xn − p∥2 + δn∥yn − p∥2

≤ αn

∥∥f(xn)− p
∥∥2 + βn∥xn − p∥2

+δn

(
∥zn − p∥2 −

(
1− θ2

λ2
n

λ2
n+1

)
∥zn − wn∥2

)
≤ αn

∥∥f(xn)− p
∥∥2 + βn∥xn − p∥2

+δn

(
∥xn − p∥2 + αnM3 −

(
1− θ2

λ2
n

λ2
n+1

)
∥zn − wn∥2

)
≤ ∥xn − p∥2 + αn

(∥∥f(xn)− p
∥∥2 +M3

)
− δn

(
1− θ2

λ2
n

λ2
n+1

)
∥zn − wn∥2,

for each n ≥ n0. This implies

δn

(
1− θ2

λ2
n

λ2
n+1

)
∥zn − wn∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2

+αn

(∥∥f(xn)− p
∥∥2 +M3

)
,(3.29)

for each n ≥ n0. Thus, by condition (C1), (C2) and (3.21), we get

lim
n→∞

∥zn − wn∥ = 0.(3.30)

Using this one together with (3.15), we also get

lim
n→∞

∥yn − wn∥ = 0.(3.31)

Observe that

∥xn+1 − p∥2 = αn

∥∥f(xn)− p
∥∥2 + βn∥xn − p∥2 + δn∥yn − p∥2

−αnβn∥f(xn)− xn∥2 − αnδn∥f(xn)− yn∥2 − βnδn∥xn − yn∥2,

for each n ≥ n0. This is,

βnδn∥xn − yn∥2 ≤ αn

∥∥f(xn)− p
∥∥2 + βn∥xn − p∥2 + δn∥yn − p∥2

−∥xn+1 − p∥2.(3.32)

Moreover, we know that

∥yn − p∥2 ≤ ∥zn − p∥2 ≤ ∥xn − p∥2 + αnM3.
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Then, from (3.32), we obtain

βnδn∥xn − yn∥2 ≤ αn

∥∥f(xn)− p
∥∥2 + βn∥xn − p∥2 + δn∥xn − p∥2 + αnδnM3

−∥xn+1 − p∥2

≤ αn

(∥∥f(xn)− p
∥∥2 +M3

)
+ ∥xn − p∥2 − ∥xn+1 − p∥2.(3.33)

By conditions (C1) and (C2), we have

lim
n→∞

∥xn − yn∥ = 0.(3.34)

Next, we will show that limn→∞ ∥xn+1 − xn∥ = 0. Using the definition of xn+1, we
have

∥xn+1 − xn∥ =
∥∥αnf(xn) + βnxn + δnyn − xn

∥∥
≤ αn

∥∥f(xn)− xn

∥∥+ δn∥yn − xn∥,
for each n ≥ n0. By using (3.34) and condition (C1), we obtain

lim
n→∞

∥xn+1 − xn∥ = 0.(3.35)

Now, consider

∥zn − xn∥ =
∥∥xn + µn(xn − xn−1)− xn

∥∥
≤ αn

µn

αn
∥xn − xn−1∥,

for each n ≥ n0. By conditions (C1) and (C3), we get

lim
n→∞

∥zn − xn∥ = 0.(3.36)

On the other hand, since {xn} is bounded on H , there exists a subsequence {xnj} of
{xn} converges weakly to x∗ ∈ H . Next, we will show that x∗ ∈ Ω. Consider∥∥x∗ − JB

λn
(I − λnA)x∗∥∥2 ≤

〈
x∗ − JB

λn
(I − λnA)x∗, x∗ − znj

〉
+
〈
x∗ − JB

λn
(I − λnA)x∗, znj − JB

λn
(I − λnA)znj

〉
+
〈
x∗ − JB

λn
(I − λnA)x∗, JB

λn
(I − λnA)znj − JB

λn
(I − λnA)x∗〉,

for each j ∈ N. By using (3.30) and (3.36), we obtain

lim
j→∞

∥∥x∗ − JB
λn

(I − λnA)x∗∥∥ = 0.

It follows that, x∗ = JB
λn

(I − λnA)x∗ and hence x∗ ∈ Ω.

Finally, we prove that the sequence {xn} converges strongly to p = PΩf(p). Now, we
know that {xn} is bounded, and we have from (3.35) that ∥xn+1 − xn∥ → 0, as n → ∞.
With loss of generality, we may assume that a subsequence {xnj+1} of {xn+1} converges
weakly to x∗ ∈ H . Thus, we have

lim sup
n→∞

2

1− κ2

〈
f(p)− p, xn+1 − p

〉
= lim

j→∞

2

1− κ2

〈
f(p)− p, xnj+1 − p

〉
=

2

1− κ2

〈
f(p)− p, x∗ − p

〉
≤ 0.(3.37)

By using (3.37) and together with the condition (C3), we obtain

lim sup
n→∞

(
M2

1− κ2

µn

αn
∥xn − xn−1∥+

2

1− κ2

〈
f(p)− p, xn+1 − p

〉)
≤ 0.(3.38)

From (3.27), by using Lemma 2.3, we can conclude that xn → p, as n → ∞.
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Case 2: Suppose that
{
∥xn−p∥

}
is not monotonically non-increasing for all n ≥ n0. By

the setting Γn = ∥xn − p∥, ∀n ∈ N and let τ : N → N be a mapping defined by

τ(n) := max
{
k ∈ N : k ≤ n, Γk ≤ Γk+1

}
,

for all n ≥ n0. Then, we have {τ(n)} is a nondecreasing sequence, with τ(n) → ∞ as
n → ∞ and

0 ≤ Γτ(n) ≤ Γτ(n)+1, ∀n ≥ n0,

see [17]. And, it follows that ∥xτ(n) − p∥2 − ∥xτ(n)+1 − p∥2 ≤ 0, for each n ≥ n0. From
(3.29), we obtain the following relation

δτ(n)

(
1− θ2

λ2
τ(n)

λ2
τ(n)+1

)
∥zτ(n) − wτ(n)∥2

≤ ∥xτ(n) − p∥2 − ∥xτ(n)+1 − p∥2 + ατ(n)

(
∥f(xτ(n))− p∥2 +M3

)
≤ ατ(n)

(
∥f(xτ(n))− p∥2 +M3

)
,

for each n ≥ n0. Following the line proof as in the Case 1, we can get

lim
n→∞

∥zτ(n) − wτ(n)∥ = 0,

lim
n→∞

∥yτ(n) − wτ(n)∥ = 0,

lim
n→∞

∥xτ(n)+1 − xτ(n)∥ = 0,

and

lim sup
n→∞

(
M2

1− κ2

µτ(n)

ατ(n)
∥xτ(n) − xτ(n)−1∥+

2

1− κ2

〈
f(p)− p, xτ(n)+1 − p

〉)
≤ 0.

Since the sequence {xτ(n)} is bounded, we can find a subsequence of {xτ(n)}, and for
the sake of simplicity we will still denote it by {xτ(n)}, which converges weakly to x∗ ∈
(A+B)−10. From the relation in (3.27), we obtain

∥xτ(n)+1 − p∥2 ≤
(
1− ατ(n)(1− κ2)

)
∥xτ(n) − p∥2

+ατ(n)(1− κ2)Tτ(n),

where Tτ(n) =
M2

1− κ2

µτ(n)

ατ(n)
∥xτ(n) − xτ(n)−1∥ +

2

1− κ2

〈
f(p) − p, xτ(n)+1 − p

〉
, for each

n ≥ n0. Consequently, we have

ατ(n)(1− κ2)∥xτ(n) − p∥2 ≤ ∥xτ(n) − p∥2 − ∥xτ(n)+1 − p∥2

+ατ(n)(1− κ2)Tτ(n)

≤ ατ(n)(1− κ2)Tτ(n).(3.39)

Since ατ(n)(1− κ2) > 0, it follows from (3.39) that

lim sup
n→∞

∥xτ(n) − p∥2 ≤ 0.

This implies

lim
n→∞

∥xτ(n) − p∥2 = 0,

and also

lim
n→∞

∥xτ(n) − p∥ = 0.(3.40)
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By using limn→∞ ∥xτ(n)+1 − xτ(n)∥ = 0 and (3.40), then we have

∥xτ(n)+1 − p∥ ≤ ∥xτ(n)+1 − xτ(n)∥+ ∥xτ(n) − p∥ → 0,(3.41)

as n → ∞. Moreover, if τ(n) < n, we also have Γτ(n) ≤ Γτ(n)+1, because Γτ(n)+1 ≥ Γj for

τ(n) + 1 ≤ j ≤ n. Consequently, we obtain

0 ≤ Γn ≤ max
{
Γτ(n),Γτ(n)+1

}
= Γτ(n)+1,

for each n ≥ n0. By using (3.41), we have that limn→∞ Γn = 0. Therefore, we can conclude
that {xn} converges strongly to p. This completes the proof. □

Remark 3.1. Observe that if βn = 0, Algorithm 3.1 is reduced to Algorithm (1.9). How-
ever, according to condition (C2), we can not use the Theorem 3.1 to guarantee the con-
vergence of sequence {xn} to a solution point in this situation.

Remark 3.2. (a) [27] The condition (C3) is easily implemented in numerical computation
because we can find the value of ∥xn − xn−1∥ before choosing µn. Indeed, we can choose
the parameter µn such that 0 ≤ µn ≤ µ̄n, where

µ̄n =

min

{
µ,

ωn

∥xn − xn−1∥

}
, if xn ̸= xn−1;

µ, otherwise,

where ωn is a positive sequence such that ωn = o(αn).

(b) The following choice is the special case of (a); we choose αn =
1

n+ 1
, ωn =

1

(n+ 1)2

and µ =
n− 1

n+ κ− 1
∈ [0, 1). Then, we have

µ̄n =


min

{
n− 1

n+ κ− 1
,

1

(n+ 1)2∥xn − xn−1∥

}
, if xn ̸= xn−1;

n− 1

n+ κ− 1
, otherwise.

(c) If f := ∇h, where h : H → R is a continuous differentiable function, then in The-
orem 3.1 we have {xn} converges strongly to p ∈ Ω, where p = PΩ∇h(p), which is the
optimality condition for the minimization problem

min
x∈Ω

1

2
∥x∥2 − h(x).

4. APPLICATIONS

In this section, we will show some applications of the problem (1.3) via Theorem 3.1.

4.1. Variational inequality problem. Recall that the normal cone to C at u ∈ C is defined
as

NC(u) =
{
z ∈ H : ⟨z, y − u⟩ ≤ 0, ∀y ∈ C

}
.(4.42)

It is well known that NC is a maximal monotone operator. In the case B := NC : H → 2H ,
we can verify that the problem (1.3) is reduced to the variational inequality problem: the
problem of finding x∗ ∈ C such that

⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C.(4.43)
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We will denote V IP (C,A) for the solution set of the problem (4.43). Also, in this case, we
have JB

λ =: PC (the metric projection of H onto C). By the above setting, the problem
(1.3) is reduced to a problem of finding a point

x∗ ∈ V IP (C,A) =: ΩA,C .(4.44)

Thus, by applying Theorem 3.1, we obtain the following result.

Algorithm 4.1. Let {αn}, {βn} and {δn} be sequences in (0, 1) with αn + βn + δn = 1 and the
initial x0, x1 ∈ H be arbitraries, define

zn = xn + µn(xn − xn−1),

wn = PC(I − λnA)zn,

yn = wn − λn(Awn −Azn),

xn+1 = αnf(xn) + βnxn + δnyn, ∀n ∈ N,(4.45)

where {µn} ⊂ [0, µ) with µ ∈ [0, 1) and {λn} is defined by

λn+1 =

min

{
θ∥zn−wn∥

∥Azn−Awn∥ , λn

}
, if Azn −Awn ̸= 0;

λn, otherwise,

when λ1 > 0 and θ ∈ (0, 1).

Theorem 4.2. Let H be a real Hilbert space and C be a nonempty closed convex subset of H . Let
{xn} be generated by Algorithm 4.1. Suppose that the assumptions (A1) and (A3) hold, ΩA,C ̸= ∅
and the following control conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) There exist a positive real number a with 0 < a ≤ βn and 0 < a ≤ δn, for each n ∈ N;
(C3) limn→∞

µn

αn
∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ ΩA,C , where p = PΩA,C
f(p).

4.2. Convex minimization problem. We will consider a convex function g : H → R,
which is Fréchet differentiable. Let C be a given closed convex subset of H . In this case, by
setting A := ∇g (the gradient of g) and B := NC , the problem of finding x∗ ∈ (A+B)−10
is equivalent to find a point x∗ ∈ C such that

〈
∇g(x∗), x− x∗〉 ≥ 0, ∀x ∈ C.(4.46)

Note that (4.46) is equivalent to the following minimization problem: find x∗ ∈ C such
that

x∗ ∈ argmin
x∈C

g(x).

Thus, in this situation, the problem (1.3) is reduced to a problem of finding a point

x∗ ∈ argmin
x∈C

g(x) =: Ωg,C .(4.47)

Subsequently, we obtain the following result.
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Algorithm 4.2. Let {αn}, {βn} and {δn} be sequences in (0, 1) with αn + βn + δn = 1 and the
initial x0, x1 ∈ H be arbitraries, define

zn = xn + µn(xn − xn−1),

wn = PC(I − λn∇g)zn,

yn = wn − λn

(
∇g(wn)−∇g(zn)

)
,

xn+1 = αnf(xn) + βnxn + δnyn, ∀n ∈ N,(4.48)

where {µn} ⊂ [0, µ) with µ ∈ [0, 1) and {λn} is defined by

λn+1 =

min

{
θ∥zn−wn∥

∥∇g(zn)−∇g(wn)∥ , λn

}
, if ∇g(zn)−∇g(wn) ̸= 0;

λn, otherwise,

when λ1 > 0 and θ ∈ (0, 1).

Theorem 4.3. Let H be a real Hilbert space and C be a nonempty closed convex subset of H .
Let g : H → R be convex and Fréchet differentiable, ∇g be η-Lipschitz. Let {xn} be generated
by Algorithm 4.2. Suppose that the assumptions (A4) hold, Ωg,C ̸= ∅ and the following control
conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) There exist a positive real number a with 0 < a ≤ βn and 0 < a ≤ δn, for each n ∈ N;
(C3) limn→∞

µn

αn
∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ Ωg,C , where p = PΩg,C
f(p).

4.3. Split feasibility problem. Let H1 and H2 be two real Hilbert spaces. Let C and Q
be nonempty closed convex subsets of H1 and H2, respectively, and let L : H1 → H2 be
a bounded linear operator. We set B := NC : H1 → 2H1 , then JB

λn
=: PC . It follows that

F (JB
λn

) = F (PC) = C. Now, we note that L∗(I − PQ)L is 1
2∥L∥2 − ism; see [30]. By the

setting A =: L∗(I−PQ)L, then it is 2∥L∥2-Lipschitz. From the above setting, we can verify
that the problem (1.3) is reduced to the following split feasibility problem; the problem of
finding a point

x∗ ∈ C ∩ L−1Q =: ΩC,Q;(4.49)

see [7, 35] for more information. Then, by applying Theorem 3.1, we obtain the following
result.

Algorithm 4.3. Let {αn}, {βn} and {δn} be sequences in (0, 1) with αn + βn + δn = 1 and the
initial x0, x1 ∈ H be arbitraries, define

zn = xn + µn(xn − xn−1),

wn = PC

(
I − λnL

∗(I − PQ)L
)
zn,

yn = wn − λn

(
L∗(I − PQ)Lwn − L∗(I − PQ)Lzn

)
,

xn+1 = αnf(xn) + βnxn + δnyn, ∀n ∈ N,(4.50)

where {µn} ⊂ [0, µ) with µ ∈ [0, 1) and {λn} is defined by

λn+1 =

min

{
θ∥zn−wn∥

∥L∗(I−PQ)Lzn−L∗(I−PQ)Lwn∥ , λn

}
, if L∗(I − PQ)Lzn − L∗(I − PQ)Lwn ̸= 0;

λn, otherwise,

when λ1 > 0 and θ ∈ (0, 1).
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Theorem 4.4. Let H1 and H2 be two real Hilbert spaces. Let C and Q be nonempty closed convex
subsets of H1 and H2, respectively, and let L : H1 → H2 be a bounded linear operator. Let {xn} be
generated by Algorithm 4.3. Suppose that the assumptions (A3) hold, ΩC,Q ̸= ∅ and the following
control conditions are satisfied:

(C1) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞;
(C2) There exist a positive real number a with 0 < a ≤ βn and 0 < a ≤ δn, for each n ∈ N;
(C3) limn→∞

µn

αn
∥xn − xn−1∥ = 0.

Then, {xn} converges strongly to p ∈ ΩC,Q, where p = PΩC,Q
f(p).

5. NUMERICAL EXPERIMENTS

In this section, we will consider some numerical experiments to illustrate the use of
Theorem 3.1.

Example 5.1. Let H = R2 be equipped with the Euclidean norm. For each x :=

(
x1

x2

)
∈ H ,

we consider the following two norms:

∥x∥1 = |x1|+ |x2| and ∥x∥∞ = max
{
|x1|, |x2|

}
.

Let a function g : H → R, which is defined by

g(x) = ∥x∥1, ∀x ∈ H.

Now, we have a subdifferential operator of g is

∂g(x) =
{
z ∈ H : ⟨x, z⟩ = ∥x∥1, ∥z∥∞ ≤ 1

}
, ∀x ∈ H.

Since g is a convex function, then ∂g(·) is a maximal monotone operator. Moreover, for
each λ > 0, we have

J∂g
λ (x) =

{(
u1

u2

)
∈ H : ui = xi −

(
min{|xi|, λ}

)
sgn(xi), for i = 1, 2

}
,

where sgn(·) stands for the signum function.

Next, let x̄ :=

(
5
4

)
∈ H be fixed vector. We consider 1-Lipschitz operator PQ, where

Q :=
{
u ∈ H : ⟨x̄, u⟩ ≤ −9

}
.

Furthermore, we consider a contraction mapping f :=

[
1
2 0
0 1

10

]
.

Under the above settings, we will consider the problem to find a point

(5.51) x∗ ∈ (PQ + ∂g)−10.

Notice that the solution set of problem (5.51) is Ω :=

{(
x

4x−1
5

)
∈ H : x ≥ 0.25

}
. More-

over, we can check that p = fΩ(p), when p =

(
0.25
0

)
. We determine the results using the

stopping criterion by
∥xn+1 − xn∥
max{1, ∥xn∥}

≤ 1.0e−06.

We first consider Algorithm 3.1 with four cases of the step size parameters αn, βn and
δn:

Case 1. αn =
1

n+ 10
, βn = 0.9, δn = 0.1− 1

n+ 10
;

Case 2. αn =
1

n+ 10
, βn = 0.5, δn = 0.5− 1

n+ 10
;
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Case 3. αn =
1

n+ 10
, βn = 0.1, δn = 0.9− 1

n+ 10
;

Case 4. αn =
1

n+ 10
, βn = 0, δn = 1− 1

n+ 10
.

We consider seven different initial points as follows:

IP 1. x0 = (0, 0)⊤, x1 = (1, 1)⊤;
IP 2. x0 = (−1,−1)⊤, x1 = (1, 1)⊤;
IP 3. x0 = (1,−1)⊤, x1 = (−1, 1)⊤;
IP 4. x0 = (1, 10)⊤, x1 = (1,−10)⊤;
IP 5. x0 = (1, 10)⊤, x1 = (−1, 10)⊤;
IP 6. x0 = (1,−10)⊤, x1 = (1, 10)⊤;
IP 7. x0 = (−10, 10)⊤, x1 = (10,−10)⊤.

We choose µ = 0.5 and let ωn =
1

(n+ 10)2
, and define µn by following Remark 3.2(a).

Under the different initial points, the results are shown in Table 1, with fixed values of
θ = 0.5 and λ1 = 0.5. From Table 1, we compute the average of iterations for different
four cases of parameters αn, βn and δn, and show in Figure 1. The figure shows that the
average iteration number seems to decrease when the parameter βn is decreased (consider
Case 1 with Case 2 and Case 3). However, when we consider Case 3 and Case 4, we find
that the number of iteration numbers is increased, but βn is decreased from 0.1 to 0.

In Table 2, we consider the numerical experiments by focusing to the parameter θ. We
consider the initial point IP 2 with the four cases of parameters αn, βn and δn as above.
We will consider different three values of θ that are θ = 0.1, θ = 0.5, and θ = 0.9. From the
presented results in Table 2, we found that the Case 3 of parameters αn, βn and δn with
θ = 0.5, and θ = 0.9 show the superiority result of the iteration number. Indeed, we may
observe that the larger values of parameter θ provide faster convergence.

In conclusion, as we can see that when we consider the Case 4 of parameters αn, βn

and δn, the Algorithm 3.1 is nothing but Algorithm (1.9). Thus, the above results and ex-
periment show that more choices on the parameters based on Algorithm 3.1 will provide
more chances for getting better convergence results.

FIGURE 1. The average of iterations for different cases of parameters αn, βn and δn.
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TABLE 1. Numerical experiments for the different stepsize parameters of
αn, βn and δn to Algorithm 3.1 with some initial points.

Case → Case 1 Case 2 Case 3 Case 4
# x0, x1 ↓ Iters Sol Iters Sol Iters Sol Iters Sol

IP 1 399
(
0.231091
0.001355

)
318

(
0.245085
0.000364

)
286

(
0.246947
0.000227

)
896

(
0.249100
0.000067

)
IP 2 399

(
0.231091
0.001355

)
318

(
0.245085
0.000364

)
286

(
0.246947
0.000227

)
896

(
0.249100
0.000067

)
IP 3 2,892

(
0.247152
0.000213

)
1,275

(
0.248727
0.000095

)
946

(
0.249052
0.000071

)
896

(
0.249100
0.000067

)
IP 4 2,892

(
0.247152
0.000213

)
1,275

(
0.248727
0.000095

)
946

(
0.249052
0.000071

)
896

(
0.249100
0.000067

)
IP 5 1,339

(
0.244117
0.000433

)
2,101

(
0.249240
0.000057

)
2,228

(
0.249600
0.000030

)
2,240

(
0.249642
0.000027

)
IP 6 2,698

(
0.247079
0.000216

)
3,392

(
0.249532
0.000035

)
3,496

(
0.249747
0.000019

)
3,504

(
0.249773
0.000017

)
IP 7 3,828

(
0.247953
0.000151

)
1,985

(
0.249196
0.000060

)
1,661

(
0.249462
0.000040

)
1,660

(
0.249515
0.000036

)

TABLE 2. Influence of the parameter θ of Algorithm 3.1 for different cases
of parameters αn, βn and δn with the initial point x0 = (−1,−1)⊤, x1 =
(1, 1)⊤.

Case → Case 1 Case 2 Case 3 Case 4
# θ ↓ Iters Sol Iters Sol Iters Sol Iters Sol

θ = 0.1 562
(
0.202179
0.000095

)
380

(
0.233877
0.000033

)
327

(
0.239381
0.000022

)
317

(
0.240120
0.000020

)
θ = 0.5 399

(
0.231091
0.001355

)
318

(
0.245085
0.000364

)
286

(
0.246947
0.000227

)
896

(
0.249100
0.000067

)
θ = 0.9 399

(
0.231091
0.001355

)
318

(
0.245085
0.000364

)
286

(
0.246947
0.000227

)
896

(
0.249100
0.000067

)

6. CONCLUSIONS

In this work, we present a new algorithm for finding a solution of monotone inclu-
sion problems in Hilbert spaces, problem (1.3). The suggestion algorithm is modified by
including the inertial method and Tseng type algorithm, Algorithm 3.1. By providing
suitable control conditions to the process, we obtain the strong convergence theorem of
the proposed algorithm (Theorem 3.1). In applications, we apply the theorem to the vari-
ational inequality problem, convex minimization problem, and split feasibility problem.
Finally, the numerical experiments of the suggested algorithm are shown, and it is found
that considerations on the choice of parameters are needed in order to get better conver-
gence results.
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