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Necessary and sufficient optimality conditions for reverse
quasiconvex programs

NITHIRAT SISARAT1 and RABIAN WANGKEEREE2,3

ABSTRACT. The goal of this paper is to examine both necessary and sufficient conditions for a specific feasible
point to be a global minimizer for reverse quasiconvex programming problems. These results are obtained in
terms of adequate approximate subdifferentials and can be viewed as the problem of a convex maximization
problem constrained by a convex set. Sufficient conditions for optimality are also established in terms of the
Greenberg-Pierskalla subdifferential. Illustrative examples are also given to illustrate the significance of the
obtained results.

1. INTRODUCTION

Generalized convexity has grown remarkably of considerable interest in nonconvex
optimization problems. The most significant one is the category of quasiconvex functions.
Recently, there have been substantial improvements in the study of optimality criteria
for reverse quasiconvex minimization problems [12], that is, minimizing a quasiconvex
function f : Rn → R subject to a reverse quasiconvex constraint {x ∈ Rn : g(x) ≥ 0}
defined by a quasiconvex function g : Rn → R. However, much work remains to be done.

Reverse quasiconvex optimization can be regarded as an extension of reverse con-
vex optimization. Moreover, reverse quasiconvex constraints are important research as-
pects in set containment characterization and duality theory [11, 12, 13, 14]. In partic-
ular, reverse convex optimization problems constitute an all-encompassing framework
for a vast class of nonconvex optimization problems including DC (difference of con-
vex functions) programming problems and convex maximization problems, and have
been widely studied in different contexts during the previous four decades (see, e.g.,
[1, 2, 4, 8, 9, 10, 15, 16, 17, 18] and their references). Interesting conditions that are es-
sential and sufficient for global optimality for reverse convex optimization problems have
been proposed [1, 15]. For instance, x̄ is a global minimizer of reverse convex program-
ming, minx∈Rn{f(x) : x ∈ C, g(x) ≥ 0} where f and g are convex functions and C is a
nonempty closed convex subset of Rn, if and only if

(1.1)
{

g(x̄) = 0;
∂ϵg(x̄) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄), ∀ϵ ≥ 0,

where lev≤(f, f(x̄)) := {x ∈ Rn : f(x) ≤ f(x̄)}. Additionally, it is remarkable that the
global minimizer x̄ of the reverse convex programming can be obtained by solving the
corresponding equation

(1.2) max
x∈C

f(x)≤f(x̄)

g(x) = 0.
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However, this property does not generally hold for reverse quasiconvex programming,
see Example 3.2. Naturally, we asked ourselves whether global optimality conditions for
reverse quasiconvex programming problems can be established similarly as in (1.1). What
ϵ-subdifferential would be most relevant for our investigation? Can further conditions be
added to (1.2) so that it also gains validity? The present paper provides an affirmative
answer to these questions.

To this aim, we use the normal cone type approximate subdifferentials that contribute
significantly to establishing necessary and sufficient optimality conditions for maximiz-
ing a quasiconvex function on a convex set [19]. We achieve this by using some results
in quasiconvex analysis together with a proper separation theorem. We then provide
global optimality conditions for reverse quasiconvex programming problems by solving
the equation (2.3) under appropriate conditions. Moreover, we also investigate global op-
timality conditions for reverse quasiconvex programming problems in terms of adequate
subdifferentials together with the traditional normal cone. Our proof method essentially
is motivated by the approach as the ones in [15, 19]. It is worth mentioning here that
Suzuki [12] only examined necessary optimality criteria for reverse quasiconvex program-
ming in terms of Greenberg-Pierskalla subdifferentials. Our investigation yields another
way of establishing global optimality conditions for reverse quasiconvex programming
problems by employing the continuity properties along with the quasiconvexities of in-
volved functions.

The rest of the paper is organized as follows: in the next section, we recall some defini-
tions and results that will be required in the sequel. In Section 3, we establish conditions
that are essential and sufficient for global optimality for reverse quasiconvex minimiza-
tion problems in terms of suitable ϵ-subdifferentials. We also present some new global
optimality conditions in terms of Greenberg-Pierskalla subdifferentials along with nor-
mal cones.

2. PRELIMINARIES

This section starts off by providing the fundamental concepts and notations that will
be utilized throughout the article. Let ⟨u, v⟩ denote the inner product of two vectors u and
v in Rn. For a real-valued function f : Rn → R, we denote by lev∗(f, γ) := {x ∈ Rn :
f(x) ∗ γ} for any γ ∈ R its level sets of f with respect to a binary relation ∗ on R. Recall
that the function f is quasiconvex if lev≤(f, γ) is a convex set for all γ ∈ R. Remark that
any convex function is a quasiconvex function, while the reverse is typically not true. If
a function f is quasiconvex and every local minimizer x ∈ Rn of f in Rn is also a global
minimizer, then f is said to be essentially quasiconvex. Evidently, any convex function is
an essentially quasiconvex. Note that a real-valued continuous quasiconvex function can
only be essentially quasiconvex if the following condition is met:

f(x1) < f(x2) =⇒ f((1− α)x1 + αx2) < f(x2),

whenever x1, x2 ∈ Rn, and α ∈ ]0, 1[ (see, e.g., [3, Theorem 3.37]).
For each ϵ ≥ 0, one associates the ϵ-normal set and the normal cone of the nonempty set

E ⊆ Rn at a ∈ E by

Nϵ(E, a) := {u ∈ Rn : ⟨u, x− a⟩ ≤ ϵ, ∀x ∈ E}, N(E, a) := N0(E, a).

The normal cone type (approximate) subdifferentials of f at x̄ are defined by

∂v
ϵ f(x̄) := Nϵ(lev≤(f, f(x̄)), x̄), ∂

vf(x̄) := ∂v
0f(x̄).

Let us now review the results that will be relevant in the sequel.
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Lemma 2.1. [13, Theorem 11] Let f : Rn → R be a continuous quasiconvex function. If there
exists γ ∈ R such that int(lev≤(f, γ)) ̸= ∅ and int(lev=(f, γ)) = ∅, then one has

(i) lev<(f, γ) = int(lev≤(f, γ)),
(ii) cl(lev<(f, γ)) = lev≤(f, γ).

The following theorem is directly from [19, Proposition 2].

Theorem 2.1. Let h : Rn → R be a convex function and let x̄ ∈ Rn be such that lev<(h, h(x̄)) ̸=
∅. For each ϵ ≥ 0, it holds that

∂v
ϵ h(x̄) = {0} ∪

⋃
λ>0

λ∂λ−1ϵh(x̄),

where ∂ϵh(x̄) := {u ∈ Rn : ⟨u, x−x̄⟩ ≤ h(x)−h(x̄)+ϵ, ∀x ∈ Rn} stands for an ϵ-subdifferential
of h at x̄.

Lemma 2.2. [19, Proposition 1](see also [7]) Let h : Rn → R be a real-valued function and let
K be a nonempty convex subset of Rn. If x̄ is a maximizer of the problem maxx∈Rn{h(x) : x ∈
K}, then

(2.3) ∂v
ϵ h(x̄) ⊆ Nϵ(K, x̄), ∀ϵ ≥ 0.

Moreover, if lev≤(h, h(x̄)) is a closed convex set and (2.3) holds, then x̄ is a maximizer of the
problem maxx∈Rn{h(x) : x ∈ K}.

3. MAIN RESULTS

Consider an optimization problem of the form

(P) min
x∈Rn

{f(x) : x ∈ C, g(x) ≥ 0},

where f, g : Rn → R are real-valued continuous functions and C is a nonempty closed
convex subset of Rn. Throughout this paper, we always assume that A := {x ∈ C : g(x) ≥
0} ≠ ∅ and f attains its minimum on A.

In this section, we establish necessary and sufficient optimality conditions for reverse
quasiconvex minimization problems in terms of suitable ϵ-subdifferentials. Here, we will
proceed by assuming the following:

(A) there exists x0 ∈ C such that g(x0) < 0 and f(x0) < infx∈A f(x).

Remark 3.1. It should be noted here that if C is bounded, it can be concluded that A is a compact
set, and so, f attains its minimum on A. Note also that (A) is equivalent to infx∈C f(x) <
infx∈A f(x) which indicates that the constraint g(x) ≥ 0 is essential. Indeed, if infx∈C f(x) ≥
infx∈A f(x), we get that infx∈C f(x) = infx∈A f(x). Consequently, the problem (P) becomes
quasiconvex minimization with convex constraint.

In order to derive necessary and sufficient optimality conditions for reverse quasicon-
vex minimization problems, the following lemma is needed.

Lemma 3.3. Let Assumption (A) hold and f be essentially quasiconvex. Then, for each x ∈
C ∩ lev>(g, 0), there exists x̃ ∈ ]x0, x[ ⊆ C such that

x̃ ∈ lev=(g, 0) ∩ lev<(f, f(x)).

Proof. Let x ∈ C ∩ lev>(g, 0) be arbitrary. By defining r(α) := αx+ (1− α)x0 and ϕ(α) :=
g(r(α)) for all α ∈ [0, 1], we assert that ϕ is continuous on [0, 1], ϕ(0) = g(r(0)) = g(x0) < 0
and ϕ(1) = g(r(1)) = g(x) > 0. Invoking an intermediate value theorem, one can find
α̃ ∈ ]0, 1[ such that ϕ(α̃) = 0. Since C is convex, we conclude that x̃ := α̃x + (1 − α̃)x0 ∈
]x0, x[ ⊆ C and so, it holds that g(x̃) = g(r(α̃)) = ϕ(α̃) = 0. Furthermore, as f(x0) <
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infx∈A f(x) ≤ f(x), the essential quasiconvexity of f yields f(x̃) < f(x), and everything
has been proved. □

Remark 3.2. Under the assumption (A) along with essential quasiconvexity of f , if x̄ ∈ A
is a minimizer, then g(x̄) = 0. Indeed, if g(x̄) > 0, it results from Lemma 3.3 that there
exists x̃ ∈ ]x0, x̄[ ⊆ C such that x̃ ∈ lev=(g, 0) ∩ lev<(f, f(x̄)). This ensures that x̃ ∈ A and
f(x̃) < f(x̄) which contradicts the hypothesis that x̄ is a minimizer of (P).

Theorem 3.2. Let f be a continuous essentially quasiconvex function, g be a continuous quasi-
convex function, and Assumption (A) hold. Let x̄ be a feasible point of problem (P).

(i) If x̄ is a minimizer of (P), then for any z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0, one
has

∂v
ϵ g(z) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, z), ∀ϵ ≥ 0.

(ii) If int(lev=(g, 0)) = ∅, and

(3.4)
{

g(x̄) = 0;
∂v
ϵ g(x̄) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄), ∀ϵ ≥ 0,

then x̄ is a minimizer of (P).

Proof. To justify (i), let us suppose that x̄ is a minimizer of (P) and assume contrary to
our assertion that there exist z ∈ lev≤(f, f(x̄)) ∩ C, ϵ ≥ 0 and u ∈ ∂v

ϵ g(z) such that
g(z) = 0 and u /∈ Nϵ(lev≤(f, f(x̄)) ∩ C, z). It then follows that ⟨u, x − z⟩ > ϵ for some
x ∈ lev≤(f, f(x̄)) ∩ C. On account of u ∈ ∂v

ϵ g(z), one has

(3.5) ⟨u, y − z⟩ ≤ ϵ, ∀y ∈ lev≤(g, 0),

where we should remind that lev≤(g, g(z)) = lev≤(g, 0). If x ∈ lev≤(g, 0), taking y := x
in relation (3.5), we conclude that ⟨u, x − z⟩ ≤ ϵ which contradicts to ⟨u, x − z⟩ > ϵ.
Otherwise, we would have g(x) > 0. According to Remark 3.3, there exists x̃ ∈ ]x0, x[⊆ C
such that g(x̃) = 0 and f(x̃) < f(x). Therefore, x̃ ∈ A and f(x̃) < f(x) ≤ f(x̄), which
again contradict to the hypothesis that x̄ is a minimizer of (P).

Let us now prove (ii) by assuming that int(lev=(g, 0)) = ∅ and (3.4) hold. We will verify
that

(3.6) lev<(f, f(x̄)) ∩ C ⊆ lev<(g, 0).

Note that both lev<(f, f(x̄)) ∩ C and lev<(g, 0) are nonempty sets due to (A). Note also
that x0 ∈ int(lev≤(g, 0)) ̸= ∅. Indeed, as g(x0) ∈ ] −∞, 0[, by continuity of g, there exists
δ > 0 such that g(B(x0, δ)) ⊆ ] −∞, 0[, where B(x0, δ) := {x ∈ Rn : ∥x − x0∥ < δ}. This
implies that B(x0, δ) ⊆ lev≤(g, 0). Now, let x be an arbitrary element in lev<(f, f(x̄)) ∩ C
fulfilling x /∈ lev<(g, 0). By Lemma 2.1(i), lev<(g, 0) = int(lev≤(g, 0)) is a nonempty open
convex set and so, the proper convex separation theorem gives us that there exist u ∈ Rn

and α ∈ R such that

(3.7) ⟨u, x⟩ > α > ⟨u, y⟩, ∀y ∈ lev<(g, 0).

Invoking Lemma 2.1(ii), we have lev≤(g, 0) = cl(lev<(g, 0)) and we obtain that for each
y ∈ lev≤(g, 0), there exists a sequence {yk} ⊂ lev<(g, 0) such that yk → y as k → +∞.
By (3.7) and passing to the limit, we actually have α ≥ ⟨u, y⟩. As we assume directly that
g(x̄) = 0, we also have α ≥ ⟨u, x̄⟩. Putting ϵ̄ := α − ⟨u, x̄⟩ ≥ 0. It follows that for any
y ∈ lev≤(g, 0) = lev≤(g, g(x̄)),

⟨u, y − x̄⟩ = ⟨u, y⟩ − ⟨u, x̄⟩ ≤ α− ⟨u, x̄⟩ = ϵ̄,
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and consequently, u ∈ ∂v
ϵ̄ g(x̄). This together with (3.4) yields u ∈ Nϵ̄(lev≤(f, f(x̄)) ∩ C, x̄)

which implies that ⟨u, x− x̄⟩ ≤ ϵ̄ due to x ∈ lev<(f, f(x̄)) ∩ C. This contradicts to the fact
that

⟨u, x− x̄⟩ = ⟨u, x⟩ − ⟨u, x̄⟩ > α− ⟨u, x̄⟩ = ϵ̄,

where the inequality holds by virtue of (3.7). Consequently, (3.6) has been justified. It then
follows from (3.6) that lev≥(g, 0) ⊆ (Rn\C) ∪ lev≥(f, f(x̄)), which amounts to

C ∩ lev≥(g, 0) ⊆ C ∩ lev≥(f, f(x̄)) ⊆ lev≥(f, f(x̄)).

Consequently, x̄ is a minimizer of (P) as desired. □

Corollary 3.1. Let f be a continuous essentially quasiconvex function, g be a continuous quasi-
convex function, and Assumption (A) hold. Let x̄ be a feasible point of problem (P). Then necessary
condition for x̄ to be a minimizer of (P) is{

g(x̄) = 0;
∂v
ϵ g(z) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, z), ∀ϵ ≥ 0,

for any z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0. If int(lev=(g, 0)) = ∅, the condition is
sufficient.

Proof. In view of Theorem 3.2, it is sufficient to establish the sufficient assertion. To this
aim, suppose that the above inclusion hold for any z ∈ lev≤(f, f(x̄))∩C satisfying g(z) =
0. By assumption, we get that ∂v

ϵ g(x̄) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄), ∀ϵ ≥ 0. Invoking
Theorem 3.2(ii), we conclude that x̄ is a minimizer of (P). □

Corollary 3.2. Let f be a continuous essentially quasiconvex function, g be a continuous quasi-
convex function, and Assumption (A) hold. Let x̄ be a feasible point of problem (P). Then necessary
conditions for x̄ to be a minimizer of (P) are{

g(x̄) = 0;
∂v
ϵ g(x̄) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄), ∀ϵ ≥ 0.

If int(lev=(g, 0)) = ∅, these conditions are sufficient.

Proof. In view of Theorem 3.2, it is sufficient to establish the necessary assertion. To do
this, suppose now that x̄ is a minimizer of (P). Invoking Theorem 3.2(i) allows us to assert
that for any z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0, one has

(3.8) ∂v
ϵ g(z) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, z), ∀ϵ ≥ 0.

By Remark 3.2, we actually have g(x̄) = 0. This combined with (3.8) which indicates that
(3.4) holds, thus yielding the desired results. □

In the case where C = Rn, the following result follows from Corollary 3.2.

Corollary 3.3. Consider the problem (P) with C = Rn. Let f be a continuous essentially qua-
siconvex function, g be a continuous quasiconvex function, and Assumption (A) hold. Let x̄ be a
feasible point of problem (P). Then necessary conditions for x̄ to be a minimizer of (P) are{

g(x̄) = 0;
∂v
ϵ g(x̄) ⊆ ∂v

ϵ f(x̄), ∀ϵ ≥ 0.

If int(lev=(g, 0)) = ∅, these conditions are sufficient.

Proof. This is an immediate consequence of Corollary 3.2 together with the definition of
normal cone type approximate subdifferentials of f . □

As an application of Corollary 3.2, we obtain optimality requirements that are both
necessary and sufficient in terms of some maximization problems with convex constraints.
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FIGURE 1. Figures for the objective function and constraint function in
Example 3.1

Corollary 3.4. Let f be a continuous essentially quasiconvex function, g be a continuous qua-
siconvex function, and Assumption (A) hold. Let x̄ be a feasible point of problem (P). If x̄ is a
minimizer of (P), then

(3.9) max
x∈C

f(x)≤f(x̄)

g(x) = 0.

Moreover, if int(lev=(g, 0)) = ∅ and (3.9) hold, then x̄ is a minimizer of (P).

Proof. Note that if x̄ is a feasible point of problem (P) and (3.9) holds then

0 ≤ g(x̄) ≤ max
x∈C

f(x)≤f(x̄)

g(x) = 0.

So, g(x̄) = 0 and the result follows directly from Lemma 2.2 and Corollary 3.2. □

The following example illustrates how Corollary 3.4 can be utilized to determine a
minimizer of a reverse quasiconvex programming problem.

Example 3.1. Consider C := [−1, 1] and the continuous functions f : R → R and g : R →
R defined by:

f(x) := min{max{−x3, (x− 1)2 − 1}, x2}
and

g(x) :=


− 4

3x− 2 if x ∈ ]−∞,−3[ ;
2 if x ∈ [−3, 0[ ;
−4x+ 2 if x ∈ [0, 1[ ;
−2 if x ∈ [1,+∞[ .

It can be checked that f is a continuous essentially quasiconvex function and g is a con-
tinuous quasiconvex function. We can see that A = [−1, 1

2 ] and infx∈A f(x) = − 1
8 . So,

Assumption (A) holds by taking x0 := 1. We also have lev=(g, 0) = { 1
2} which implies

int(lev=(g, 0)) = ∅. In addition, by considering x̄ := 1
2 we get that

max
x∈C

f(x)≤f(x̄)

g(x) = max
x∈[ 12 ,1]

g(x) = 0.

By Corollary 3.4, we conclude that x̄ is a minimizer of (P).

Noteworthy is the fact that Corollary 3.4 is not valid without the condition int(lev=(g, 0)) =
∅. The following example demonstrates this fact.



Necessary and sufficient optimality conditions for reverse quasiconvex programs 437

x

y

g

1 2 3−1−2−3
−1

−2

−3

1

2

3

FIGURE 2. The figure of the constraint function in Example 3.2

Example 3.2. Let f be defined as in Example 3.1. Let C := [−2, 2] and g : R → R be defined by

g(x) :=


− 4

3x− 4 if x ∈ ]−∞,−3[ ;
0 if x ∈ [−3, 0[ ;
−4x if x ∈ [0, 1[ ;
−4 if x ∈ [1,+∞[ .

So, A = [−2, 0], infx∈A f(x) = 0 and lev=(g, 0) = [−3, 0]. Note that Assumption (A) holds by
taking x0 := 1. Let us consider x̄ := −2. We have

max
x∈C

f(x)≤f(x̄)

g(x) = max
x∈[−2,2]

g(x) = 0.

On the one hand, x̄ is not a minimizer, i.e., f(0) = 0 < 4 = f(x̄). In light of this, the conclusion
of Corollary 3.4 fails to hold. The reason is that int(lev=(g, 0)) = ]− 3, 0[ ̸= ∅.

Remark 3.3. We point out that if there exists w ∈ lev<(g, 0) and g is a continuous essen-
tially quasiconvex function, the condition int(lev=(g, 0)) = ∅ is satisfied. Indeed, let us
say that there are x ∈ Rn and δ > 0 such that B(x, δ) ⊆ lev=(g, 0). As g(w) < 0 = g(x),
the essential quasiconvexity of g yields g((1 − α)w + αx) < g(x) = 0 for all α ∈ ]0, 1[. By
taking αk := 1− 1

k and xk := (1− αk)w + αkx for all k ∈ N, one has xk → x as k → +∞.
So, for sufficiently large k0 ∈ N, we have xk0

∈ lev=(g, 0), which contradicts to the fact
that g(xk0) < 0.

We now deduce necessary and sufficient criteria for optimality of a reverse convex
programming problem.

Corollary 3.5. Let f and g be real-valued convex functions on Rn, and Assumption (A) hold. Let
x̄ be a feasible point of problem (P). Then, x̄ is a minimizer of (P) if and only if{

g(x̄) = 0;
∂ϵg(x̄) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄), ∀ϵ ≥ 0.

Proof. Since a real-valued convex function g is continuous essentially quasiconvex and
lev<(g, 0) ̸= ∅ due to (A), we conclude by Remark 3.3 that int(lev=(g, 0)) = ∅. In addition,
in view of Lemma 2.1 and Theorem 2.1, it must yet be proved that

∂ϵg(x̄) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄), ∀ϵ ≥ 0

⇐⇒ {0} ∪
⋃
λ>0

λ∂λ−1ϵg(x̄) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄), ∀ϵ ≥ 0.
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It is clear that the implication (⇐) holds. To justify the implication (⇒), let ϵ ≥ 0 and
u ∈ {0} ∪

⋃
λ>0 λ∂λ−1ϵg(x̄). If u = 0, it then follows by the definition of ϵ-normal set

that u ∈ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄). Now, let us consider u ∈
⋃

λ>0 λ∂λ−1ϵg(x̄). So, there
exists λ > 0 such that λ−1u ∈ ∂λ−1ϵg(x̄). As λ−1ϵ ≥ 0, we have by assumption that
λ−1u ∈ Nλ−1ϵ(lev≤(f, f(x̄)) ∩ C, x̄), and hence, u ∈ Nϵ(lev≤(f, f(x̄)) ∩ C, x̄). □

Remark 3.4. Observe that the necessary assertion in Theorem 3.2 can be stated similarly
as in [15, Theorem 2.3], that is,

x̄ is a minimizer of (P) =⇒
{

∂vg(z) ∩N(lev≤(f, f(x̄)) ∩ C, z) ̸= ∅,
∀z ∈ [lev≤(f, f(x̄)) ∩ C] ∩ lev=(g, 0),

because of {
∂v
ϵ g(z) ⊆ Nϵ(lev≤(f, f(x̄)) ∩ C, z), ∀ϵ ≥ 0,

∀z ∈ [lev≤(f, f(x̄)) ∩ C] ∩ lev=(g, 0)

=⇒
{

∂vg(z) ⊆ N(lev≤(f, f(x̄)) ∩ C, z),
∀z ∈ [lev≤(f, f(x̄)) ∩ C] ∩ lev=(g, 0)

=⇒
{

∂vg(z) ∩N(lev≤(f, f(x̄)) ∩ C, z) ̸= ∅,
∀z ∈ [lev≤(f, f(x̄)) ∩ C] ∩ lev=(g, 0),

where we remind that ∂vg(z) and N(lev≤(f, f(x̄)) ∩ C, z) are nonempty sets for all z ∈
[lev≤(f, f(x̄)) ∩ C] ∩ lev=(g, 0). Note that, unlike in the case of reverse convex programs,
the condition {

∂vg(z) ⊆ N(lev≤(f, f(x̄)) ∩ C, z),
∀z ∈ [lev≤(f, f(x̄)) ∩ C] ∩ lev=(g, 0)

is more suitable than

(3.10)
{

∂vg(z) ∩N(lev≤(f, f(x̄)) ∩ C, z) ̸= ∅,
∀z ∈ [lev≤(f, f(x̄)) ∩ C] ∩ lev=(g, 0),

since (3.10) always holds as 0 ∈ ∂vg(z)∩N(lev≤(f, f(x̄))∩C, z) for all z ∈ [lev≤(f, f(x̄))∩
C] ∩ lev=(g, 0).

As we know in Remark 3.4 that (3.10) always holds, in view of the sufficient asser-
tion, now it is interesting to ask whether there are adequate subdifferentials for which
the conclusion of Theorem 3.2 holds under the nonempty intersection condition as in [15,
Theorem 2.5 ]. In this way, let us recall the Greenberg-Pierskalla subdifferential of f : Rn → R
at x̄ ∈ Rn [5] which is the set

∂∗f(x̄) := {u ∈ Rn : ⟨u, x− x̄⟩ < 0, ∀x ∈ lev<(f, f(x̄))}.
We now investigate global optimality conditions for reverse quasiconvex programming

problems in terms of normal cone type subdifferentials, which is motivated by [15, Theo-
rem 2.5] and [19, Proposition 4]. In what follows, taking this supposition into account:

(B) For any x ∈ C ∩ lev=(g, 0), it holds that ∂vg(x) ⊈ N(C, x).

Theorem 3.3. Let f be a continuous essentially quasiconvex function, g be a continuous quasi-
convex function, and Assumption (A) hold. Let x̄ be a feasible point of problem (P).

(i) If x̄ is a minimizer of (P), then for any z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0, one
has

∂vg(z) ⊆ N(lev≤(f, f(x̄)) ∩ C, z).

(ii) If Assumption (B) holds and

(3.11) ∂∗g(z) ∩N(lev≤(f, f(x̄)) ∩ C, z) ̸= ∅,
for all z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0, then x̄ is a minimizer of (P).
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Proof. (i) It can be obtained directly from Theorem 3.2 by taking ϵ = 0.
(ii) Now, assume that the assumptions of the theorem are satisfied, but x̄ is not a mini-

mizer of (P). So, there is x ∈ C ∩ lev≥(g, 0) such that f(x) < f(x̄).
If g(x) = 0, it follows from (B) that there exist u ∈ ∂vg(x) and y ∈ C such that ⟨u, y −

x⟩ > 0. Thus, for any α ∈ ]0, 1[,

⟨u, (1− α)y + αx− x⟩ = (1− α)⟨u, y − x⟩ > 0,

and so, by virtue of u ∈ ∂vg(x),

(3.12) g((1− α)y + αx) > g(x) = 0.

In particular, for each k ∈ N, by taking α := 1 − 1
k in relation (3.12), we have g(xk) > 0

for all k ∈ N where xk := 1
ky + (1 − 1

k )x, and xk → x as k → +∞. On the one hand, as
f(x) < f(x̄) and the continuity of f , there exists δ > 0 such that

f(z) < f(x̄), ∀z ∈ B(x, δ).

Thus, for sufficiently large k0 ∈ N, one has g(xk0
) > 0 and f(xk0

) < f(x̄).
While maintaining generality, by replacing xk0 with x if necessary, we may assume that

there exists x ∈ C such that g(x) > 0 and f(x) < f(x̄). Then by Lemma 3.3 there exists α ∈
]0, 1[ such that x̃ := αx+(1−α)x0 ∈ C, g(x̃) = 0 and f(x̃) < f(x). On the one hand, taking
z := x̃ in the relation (3.11), there exists u ∈ ∂∗g(x̃) fulfilling u ∈ N(lev≤(f, f(x̄)) ∩ C, x̃).
Hence, [

x0 ∈ lev<(g, g(x̃))
]∧[

u ∈ ∂∗g(x̃)
]

=⇒ α⟨u, x0 − x⟩ = ⟨u, x0 − x̃⟩ < 0

and [
x ∈ lev≤(f, f(x̄)) ∩ C

]∧[
u ∈ N(lev≤(f, f(x̄)) ∩ C, x̃)

]
=⇒ (1− α)⟨u, x− x0⟩ = ⟨u, x− x̃⟩ ≤ 0.

We get the contradiction that ⟨u, x0 − x⟩ < 0 ≤ ⟨u, x0 − x⟩ and therefore x̄ is a minimizer
of (P), which completes the proof. □

Remark 3.5. In view of Remark 3.2 and Corollary 3.2, the necessary assertion in Theorem
3.3 can be stated as “If x̄ is a minimizer of (P), then g(x̄) = 0 and ∂vg(x̄) ⊆ N(lev≤(f, f(x̄))∩
C, x̄).”

Remark 3.6. It is important to notice that the conclusions of Theorem 3.2 and Theorem
3.3 also hold by considering z ∈ Rn for which g(z) = 0, that is, a point z may not even lie
in lev≤(f, f(x̄))∩C, and by considering the normal cone N(E, a) where a /∈ E as follows,
see [15],

N(E, a) := {u ∈ Rn : ⟨u, y − a⟩ ≤ 0, ∀y ∈ E}.
However, this appears to be unnatural since we need to remain concerned regarding
Rn\C when we are actually minimizing over C. Also, the mainstream literature on con-
vex analysis of the normal cone N(E, a) is defined as the emptyset if a /∈ E.

Next let us provide an example illustrating Theorem 3.3.

Example 3.3. Let f, g and C be defined as in Example 3.1. It can be verified that C ∩
lev=(g, 0) = { 1

2}, ∂vg( 12 ) = ] −∞, 0] and N(C, 1
2 ) = {0}. So, ∂vg( 12 ) ⊈ N(C, 1

2 ), showing
that assumption (B) is satisfied. Consider x̄ := 1

2 , we get lev≤(f, f(x̄)) ∩ C = [ 12 , 1]. We
can see that

∂vg(x̄) = ]−∞, 0] ⊆ ]−∞, 0] = N(lev≤(f, f(x̄)) ∩ C, x̄).
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FIGURE 3. The figure of the constraint function in Example 3.4

As z0 := 1
2 ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z0) = 0, we also have N(lev≤(f, f(x̄)) ∩

C, z0) = ]−∞, 0]. Thus,

∂∗g(z0) ∩N(lev≤(f, f(x̄)) ∩ C, z0) = ]−∞, 0[ ̸= ∅.

By Theorem 3.3, we conclude that x̄ is a minimizer of (P).

Noteworthy is the fact that the conclusion of Theorem 3.3 may fail without the condi-
tion (B) as the following illustrated example shows.

Example 3.4. Let f be defined as in Example 3.1. Let C := [0,+∞[ and g : R → R be
defined by

g(x) :=

 4 if x ∈ ]−∞,−1[ ;
−4x if x ∈ [−1, 1[ ;
2x− 6 if x ∈ [1,+∞[ .

We see that A = {0} ∪ [3,+∞[ and infx∈A f(x) = 0. By taking x0 := 1, assumption
(A) holds. By considering x̄ := 3, we get that lev≤(f, f(x̄)) ∩ C = [0, 3]. Now, consider
z ∈ lev≤(f, f(x̄)) ∩ C such that g(z) = 0.

If z := 0, then ∂∗g(z) = ]−∞, 0[ and N(lev≤(f, f(x̄))∩C, z) = ]−∞, 0]. Thus, ∂∗g(z)∩
N(lev≤(f, f(x̄)) ∩ C, z) = ]−∞, 0[ ̸= ∅.

Similarly, if z := 3, we have ∂∗g(z) =]0,+∞[ and N(lev≤(f, f(x̄)) ∩ C, z) = [0,+∞[.
So, ∂∗g(z) ∩ N(lev≤(f, f(x̄)) ∩ C, z) = ]0,+∞[ ̸= ∅. These show that (3.11) is satisfied.
However, x̄ is not a minimizer of (P), i.e., f(x̄) = 3 > 0 = f(0). As a result, the conclusion
of Theorem 3.3 is invalid. The reason is that assumption (B) does not hold, i.e., one has
C ∩ lev=(g, 0) = {0, 3}, and ∂vg(0) = ]−∞, 0] ⊆ ]−∞, 0] = N(C, 0).

To this end, we can easily obtain the following global optimality conditions for reverse
convex programs.

Corollary 3.6. Let f and g be convex functions, and Assumption (A) hold. Let x̄ be a feasible
point of problem (P).

(i) If x̄ is a minimizer of (P), then for any z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0, one
has

∂g(z) ⊆ N(lev≤(f, f(x̄)) ∩ C, z),

where ∂g(z) := {u ∈ Rn : ⟨u, x−z⟩ ≤ g(x)−g(z), ∀x ∈ Rn} stands for a subdifferential
of g : Rn → R at z ∈ Rn,
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(ii) If for any x ∈ C ∩ lev=(g, 0), it holds that ∂g(x) ⊈ N(C, x) and

∂g(z) ∩N(lev≤(f, f(x̄)) ∩ C, z) ̸= ∅,
for all z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0, then x̄ is a minimizer of (P).

Proof. (i) This is an immediate consequence of Theorem 3.3(i) since ∂g(z) ⊆ ∂vg(z) for any
z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0.

(ii) As ∂g(z) ⊆ ∂∗g(z), we can see that

∂g(z) ∩N(lev≤(f, f(x̄)) ∩ C, z) ̸= ∅ =⇒ ∂∗g(z) ∩N(lev≤(f, f(x̄)) ∩ C, z) ̸= ∅,
for all z ∈ lev≤(f, f(x̄)) ∩ C satisfying g(z) = 0. Now for each x ∈ C ∩ lev=(g, 0), if
there exists u ∈ ∂g(x) such that u /∈ N(C, x), we also have ∂vg(x) ⊈ N(C, x) due to
∂g(x) ⊆ ∂vg(x). Thus, Assumption (B) is satisfied, and so, the conclusion follows from
Theorem 3.3. □

4. CONCLUSIONS

In this paper, we have employed proper separation theorem together with some ob-
tained results from set containment characterization for quasiconvex programming to
provide necessary and sufficient optimality conditions for reverse quasiconvex programs.
They also provide an alternative to solve the considered class of reverse quasiconvex pro-
grams via maximization problems with linked constraints. Moreover, sufficient condi-
tions for optimality in terms of Greenberg-Pierskalla subdifferential have also been pro-
vided.
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