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Modified iterative schemes with two inertia and linesearch
rule for split variational inclusion and applications to
image deblurring and diabetes prediction

SUTHEP SUANTAI1, PRASIT CHOLAMJIAK3 , PAPATSARA INKRONG3 and SUPARAT
KESORNPROM1,2∗

ABSTRACT. The purpose of this paper is to introduce a new inertial iterative algorithm involving the line-
search rule for the split variational inclusion in real Hilbert spaces. We use two inertial terms to accelerate the
convergence speed of the proposed algorithm. Under suitable conditions, we prove its weak convergence the-
orem. Finally, in applications, we apply our algorithm to image deblurring and data classification problem in
predicting diabetes mellitus.

1. INTRODUCTION

Let H be a real Hilbert space with the inner product ⟨·, ·⟩ and the induced norm ∥ · ∥.
Let G : H → 2H be a set-valued maximal monotone mapping. The resolvent mapping
JG
r : H → H associated with G is defined by

JG
r (x) = (I + rG)−1(x), ∀x ∈ H,

for some r > 0, where I is an identity operator on H.
In this paper, we study the split variational inclusion problem (SVIP) which is formu-

lated as follows:

find a point x∗ ∈ H1 such that 0 ∈ G1x
∗ and 0 ∈ G2(Ax∗),

where G1 : H1 → 2H1 and G2 : H2 → 2H2 are multi-valued maximal monotone mappings,
H1 and H2 are Hilbert spaces and A : H1 → H2 is a bounded linear operator. The split
variational inclusion problem was studied by Moudafi [25] and Censor et al. [7]. The
solution set of SVIP is denoted by

Ω = {x∗ ∈ H1 : 0 ∈ G1x
∗ and 0 ∈ G2(Ax∗)}.

It is known that SVIP includes, as special cases, the split minimization problem, the
split variational inequality problem, the split saddle point problem, the split equilibrium
problem and the split feasibility problem; see, for instance, [3, 6, 17, 25, 31, 36]. In appli-
cations, SVIP can be reduced to image processing, signal processing and data science; see
also [9, 10, 13, 26].

In recent years, numerous iterative algorithms for solving SVIP have been investigated
by several authors [11, 20, 27]. A classical iterative algorithm for solving SVIP is originally
introduced by Martinet [22] for solving convex minimization problem and Rockafellar
[32] for a maximal monotone operator. Let rn ∈ (0,∞) and x1 ∈ H1

xn+1 = JG1
rn (xn),

Received: 17.09.2023. In revised form: 12.03.2024. Accepted: 19.03.2024
2010 Mathematics Subject Classification. 49J40, 47J20, 35A15, 65K10, 97C70, 97U70.
Key words and phrases. variational inclusion problem, linesearch rule, inertial term, weak convergence, data classi-

fication, diabetes mellitus.
Corresponding author: Suparat Kesornprom; suparat.ke@gmail.com

459



460 S. Suantai et al.

where rn > 0. This is called proximal algorithm. Byrne et al. [6] established the weak
convergence of the following algorithm to solve SVIP: x1 ∈ H1 and

xn+1 = JG1
rn (xn − rnA

∗(I − JG2
rn )Axn),

where rn ∈ (0, 2/∥A∥2) and A∗ denotes the adjoint operator of A from H2 to H1.
Alvarez and Attouch [2] studied the inertial proximal algorithm: x0, x1 ∈ H1 and

xn+1 = JG1
rn (xn + θn(xn − xn−1)),

where θn ∈ [0, 1) and rn ∈ (0,∞). They established that if
∑∞

n=1 θn∥xn − xn−1∥2 < ∞
holds, then the sequence {xn} converges weakly to an element of SVIP. The term θn(xn −
xn−1) represents the so-called inertia; see also [5, 30]. Several authors aim to construct
various efficient iterative algorithms with inertial technique [1, 12, 21, 23, 33, 34].

Using inertial technique, Chuang [12] proposed the following hybrid inertial proximal
algorithm: set x0, x1 ∈ H1, ρ ∈ (0, 1) and rn > 0, and define

un = xn + θn(xn − xn−1),

yn = JG1
rn (un − λnA

∗(I − JG2
rn )Aun),

xn+1 = JG1
rn (un − γnd(un, yn)),

where

d(un, yn) = un − yn − λn(A
∗(I − JG2

rn )Aun −A∗(I − JG2
rn )Ayn),

γn =
⟨un − yn, d(un, yn)⟩

∥d(un, yn)∥2
,

and λn > 0 such that

λn∥A∗(I − JG2
rn )Aun −A∗(I − JG2

rn )Ayn∥ ≤ ρ∥un − yn∥.

They proved that if {θn} is a nonnegative sequence satisfying
∑∞

n=1 θn∥xn−xn−1∥2 < ∞,
then the sequence {xn} converges weakly to an element of SVIP.

In 2018, Dong et al. [14] introduced the following algorithm

wn = xn + αn(xn − xn−1),

yn = xn + δn(xn − xn−1),

xn+1 = (1− λn)wn + λnU(yn),

where {αn} and {δn} are nonnegative sequences and U : H → H is a nonexpansive
mapping. They proved a weak convergence theorem for this algorithm.

Inspired by previous works, we construct new inertial iterative algorithms for SVIP.
This is based on inertial technique and linesearch stepsize. Furthermore, we prove weak
convergence theorem of the proposed algorithm under some conditions. Our result can be
applied to solve the split feasibility problem which relates to data classification problem.
Numerical experiments are supported to illustrate the advantages of our method.

The frame of the paper is as follows. In section 2, preliminaries and lemmas are pre-
sented for our analysis. In section 3, our algorithm is introduced and analyzed. Then, in
section 4, we present numerical experiments to show the performance of our algorithm in-
cluding a comparison with algorithms in literature. In Section 5, we show the application
to image deblurring and data classification. Finally, in Section 6, we give conclusion.
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2. PRELIMINARIES AND LEMMAS

In this section, we present fundamental definitions and lemmas. Let H be a real Hilbert
space.

Recall that a mapping U : H → H is said to be
(1) nonexpansive if

∥Ux− Uy∥ ≤ ∥x− y∥, ∀x, y ∈ H;

(2) firmly-nonexpansive if

⟨Ux− Uy, x− y⟩ ≥ ∥Ux− Uy∥2, ∀x, y ∈ H.

We know that if U is firmly-nonexpansive, then I − U is also firmly-nonexpansive.
(3) L-Lipschitz continuous, if there exists a constant L > 0 such that

∥Ux− Uy∥ ≤ L∥x− y∥, ∀x, y ∈ H.

The operator G : H → 2H is called monotone if

⟨u− v, x− y⟩ ≥ 0,

for all (x, u), (y, v) ∈ graph(G), where graph(G) is defined by

graph(G) := {(x, u) ∈ H ×H : u ∈ G(x)}.

The operator G : H → 2H is maximally monotone if graph(G) is not properly contained
in the graph of any other monotone operators.

Lemma 2.1. [16] Let E be a nonempty closed convex subset of a real Hilbert space H and let
U : E → E be a nonexpansive mapping. If xn ⇀ x ∈ E and lim

n→∞
∥xn − Uxn∥ = 0, then

x = Ux.

We define G−1(0) = {x ∈ H : 0 ∈ Gx}, D(U) is the domain of U , and Fix(U) denotes
the fixed point set of U , i.e. Fix(U) = {x ∈ H : x = Ux}.

Lemma 2.2. [11, 24] Let H be a real Hilbert space, G : H → 2H be a set-valued maximal
monotone mapping. Thus,

(i) JG
r is a single-valued and firmly nonexpansive mapping for each r > 0;

(ii) D(JG
r ) = H and Fix(JG

r ) = {x ∈ D(G) : 0 ∈ Gx};
(iii) ∥x− JG

r x∥ ≤ ∥x− JG
γ x∥ for all 0 < r ≤ γ and for all x ∈ H;

(iv) Assume that G−1(0) ̸= ∅. Then ∥x− JG
r x∥2 + ∥JG

r − x∗∥2 ≤ ∥x− x∗∥2 for each x ∈ H,
each x∗ ∈ G−1(0), and each r > 0.

(v) Assume that G−1(0) ̸= ∅. Then ⟨x−JG
r x, JG

r x−w⟩ ≥ 0 for each x ∈ H, each w ∈ G−1(0),
and each r > 0.

Lemma 2.3. [11] Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear
operator. Let r > 0, γ > 0, G1 : H1 → 2H1 and G2 : H2 → 2H2 be set-valued maximal
monotone mappings. Given any x∗ ∈ H1.

(i) If x∗ is a solution of (SVIP), then JG1
r (x∗ − γA∗(I − JG2

r )Ax∗) = x∗.
(ii) Suppose that JG1

r (x∗−γA∗(I−JG2
r )Ax∗) = x∗ and the solution set of (SVIP) is nonempty.

Then x∗ is a solution of (SVIP).

Lemma 2.4. [11] Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear
operator and r > 0. Let G : H2 → 2H2 be a set-valued maximal monotone mapping. Define a
mapping U : H1 → H1 by Ux := A∗(I − JG

r )Ax for each x ∈ H1. Then
(i) ∥(I − JG

r )Ax− (I − JG
r )Ay∥2 ≤ ⟨Ux− Uy, x− y⟩ for all x, y ∈ H1;

(ii) ∥A∗(I − JG
r )Ax−A∗(I − JG

r )Ay∥2 ≤ ∥A∥2 · ⟨Ux− Uy, x− y⟩ for all x, y ∈ H1.
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Lemma 2.5. [29] Let {Φn}, {Ψn} and {Θn} be real positive sequences such that

Φn+1 ≤ (1 + Θn)Φn +Ψn, n ≥ 1.

If Σ∞
n=1Θn < +∞ and Σ∞

n=1Ψn < +∞, then lim
n→+∞

Φn exists.

Lemma 2.6. (Opial theorem [28]) Let E be a nonempty subset of a real Hilbert space H and {xn}
be a sequence in H that satisfies the following properties:

(i) lim
n→∞

∥xn − x∥ exists for every x ∈ E;
(ii) each weak limit point of {xn} is in E.

Then {xn} converges weakly to a point in E.

3. MAIN RESULTS

Given H1 and H2 be real Hilbert spaces. We define A : H1 → H2 as a linear and
bounded operator and A∗ is the adjoint operator of A. Let G1 : H1 → 2H1 and G2 : H2 →
2H2 be maximal monotone operators. We denote the solution set of SVIP by Ω, where Ω is
nonempty.

Lemma 3.7. Let φ−1 ≥ 0, φ0 ≥ 0, {φn}, {αn} and {δn} be nonnegative real sequences satisfying

φn+1 ≤ (1 + αn)φn + (αn + δn)φn−1 + δnφn−2, n ∈ N.

Then

φn+1 ≤ K ·
n∏

j=1

(1 + 2αj + 2δj), n ∈ N

where K = max{φ−1, φ0, φ1}. Furthermore, if
∑∞

n=1 αn < +∞ and
∑∞

n=1 δn < +∞, then
{φn} is bounded.

Proof. By mathematical induction. (See also [19]). □

Algorithm 3.1. Given γ > 0, ℓ ∈ (0, 1) and µ ∈ (0, 1). Let {rn}, {αn} and {δn} be nonnegative
real sequences. Let x−1, x0, x1 ∈ H1 be arbitrary. For n ≥ 1, calculate xn+1 as follows:

wn = xn + αn(xn − xn−1) + δn(xn−1 − xn−2)

yn = JG1
rn (wn − λnA

∗(I − JG2
rn )Awn)(3.1)

xn+1 = JG1
rn (wn − λnA

∗(I − JG2
rn )Ayn)(3.2)

where λn = γℓmn and mn is the smallest nonnegative integer satisfying the following:

λn⟨A∗(I − JG2
rn )Awn −A∗(I − JG2

rn )Ayn, xn+1 − yn⟩

≤ µ

2
(∥wn − yn∥2 + ∥xn+1 − yn∥2).(3.3)

Lemma 3.8. The linesearch rule (3.3) is well-defined and min{γ, µℓ
L } ≤ λn ≤ γ.

Proof. Obviously, (3.3) holds for all 0 < λn ≤ µ
L . It is easy to see that λn ≤ γ. Next, we

will show that λn ≥ min{γ, µℓ
L }.

If λn = γ, then this lemma is proved.
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If λn < γ, from the linesearch (3.3), we know that

µ(∥wn − yn∥2 + ∥xn+1 − yn∥2)

<
2λn

ℓ
⟨A∗(I − JG2

rn )Awn −A∗(I − JG2
rn )Ayn, xn+1 − yn⟩

≤ 2λn

ℓ
∥A∗(I − JG2

rn )Awn −A∗(I − JG2
rn )Ayn∥∥xn+1 − yn∥

≤ 2Lλn

ℓ
(∥wn − yn∥∥xn+1 − yn∥)

≤ λn

ℓ
L(∥wn − yn∥2 + ∥xn+1 − yn∥2),

where L = ∥A∥2, which implies that λn > µℓ
L . Hence λn ≥ min{γ, µℓ

L }. □

Theorem 3.1. Let {xn} be a sequence defined by Algorithm 3.1. Suppose that {rn} is a sequence
in [r,∞) for some r > 0. If

∑∞
n=1 αn < +∞ and

∑∞
n=1 δn < +∞, then {xn} converges weakly

to a solution in Ω.

Proof. Let z ∈ Ω. Then z ∈ G−1
1 (0) and Az ∈ G−1

2 (0). From Lemma 2.4(i), we obtain

⟨A∗(I − JG2
rn )Ayn, yn − z⟩

= ⟨A∗(I − JG2
rn )Ayn −A∗(I − JG2

rn )Az, yn − z⟩
= ⟨(I − JG2

rn )Ayn − (I − JG2
rn )Az,Ayn −Az⟩

≥ ∥(I − JG2
rn )Ayn∥2.(3.4)

From (3.1), (3.2) and Lemma 2.2 (v), we obtain

⟨yn − wn + λnA
∗(I − JG2

rn )Awn, xn+1 − yn⟩ ≥ 0.(3.5)
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From Lemma 2.2 (iv), we see that

∥xn+1 − z∥2

= ∥JG1
rn (wn − λnA

∗(I − JG2
rn )Ayn)− z∥2

≤ ∥wn − λnA
∗(I − JG2

rn )Ayn − z∥2 − ∥xn+1 − wn + λnA
∗(I − JG2

rn )Ayn∥2

= ∥wn − z∥2 − 2λn⟨A∗(I − JG2
rn )Ayn, wn − z⟩+ ∥λnA

∗(I − JG2
rn )Ayn∥2

−∥xn+1 − wn∥2 − 2λn⟨A∗(I − JG2
rn )Ayn, xn+1 − wn⟩ − ∥λnA

∗(I − JG2
rn )Ayn∥2

= ∥wn − z∥2 − ∥xn+1 − wn∥2 − 2λn⟨A∗(I − JG2
rn )Ayn, xn+1 − z⟩

= ∥wn − z∥2 − ∥xn+1 − wn∥2 − 2λn⟨A∗(I − JG2
rn )Ayn, xn+1 − yn⟩

−2λn⟨A∗(I − JG2
rn )Ayn, yn − z⟩

= ∥wn − z∥2 − ∥xn+1 − yn + yn − wn∥2

−2λn⟨A∗(I − JG2
rn )Ayn −A∗(I − JG2

rn )Awn +A∗(I − JG2
rn )Awn, xn+1 − yn⟩

−2λn⟨A∗(I − JG2
rn )Ayn, yn − z⟩

= ∥wn − z∥2 − ∥xn+1 − yn∥2 − ∥yn − wn∥2 − 2⟨yn − wn, xn+1 − yn⟩
−2λn⟨A∗(I − JG2

rn )Ayn −A∗(I − JG2
rn )Awn, xn+1 − yn⟩

−2λn⟨A∗(I − JG2
rn )Awn, xn+1 − yn⟩ − 2λn⟨A∗(I − JG2

rn )Ayn, yn − z⟩
= ∥wn − z∥2 − ∥xn+1 − yn∥2 − ∥yn − wn∥2

−2⟨yn − wn + λnA
∗(I − JG2

rn )Awn, xn+1 − yn⟩
+2λn⟨A∗(I − JG2

rn )Awn −A∗(I − JG2
rn )Ayn, xn+1 − yn⟩

−2λn⟨A∗(I − JG2
rn )Ayn, yn − z⟩.

From (3.3), (3.4) and (3.5), we have

∥xn+1 − z∥2 ≤ ∥wn − z∥2 − ∥xn+1 − yn∥2 − ∥yn − wn∥2 + µ∥xn+1 − yn∥2

+µ∥wn − yn∥2 − 2λn∥(I − JG2
rn )Ayn∥2

= ∥wn − z∥2 − (1− µ)∥xn+1 − yn∥2 − (1− µ)∥wn − yn∥2

−2λn∥(I − JG2
rn )Ayn∥2.(3.6)

From definition of wn, we see that

∥wn − z∥ = ∥xn + αn(xn − xn−1) + δn(xn−1 − xn−2)− z∥
≤ ∥xn − z∥+ αn∥xn − xn−1∥+ δn∥xn−1 − xn−2∥.(3.7)

Since µ ∈ (0, 1) and from (3.6) and (3.7), we see that

∥xn+1 − z∥ ≤ ∥wn − z∥
≤ ∥xn − z∥+ αn∥xn − xn−1∥+ δn∥xn−1 − xn−2∥
≤ ∥xn − z∥+ αn(∥xn − z∥+ ∥xn−1 − z∥) + δn(∥xn−1 − z∥+ ∥xn−2 − z∥)
= (1 + αn)∥xn − z∥+ (αn + δn)∥xn−1 − z∥+ δn∥xn−2 − z∥.(3.8)

From Lemma 3.7, we obtain

∥xn+1 − z∥ ≤ K

n∏
j=1

(1 + 2αj + 2δj),

where K = max{∥x1 − z∥, ∥x0 − z∥, ∥x−1 − z∥}. Moreover, we obtain {xn} is bounded.
Also, we have

∑∞
n=1 αn∥xn − xn−1∥ < +∞ and

∑∞
n=1 δn∥xn−1 − xn−2∥ < +∞. Using
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Lemma 2.5 and (3.8), we have limn→∞ ∥xn − z∥ exists. On the otherhand, we get

∥wn − z∥2

= ∥xn + αn(xn − xn−1) + δn(xn−1 − xn−2)− z∥2

= ∥(xn − z) + αn(xn − xn−1)∥2 + δ2n∥xn−1 − xn−2∥2

+2⟨xn − z + αn(xn − xn−1), δn(xn−1 − xn−2)⟩
= ∥xn − z∥2 + α2

n∥xn − xn−1∥2 + 2⟨xn − z, αn(xn − xn−1)⟩+ δ2n∥xn−1 − xn−2∥2

+2⟨xn − z, δn(xn−1 − xn−2)⟩+ 2⟨αn(xn − xn−1), δn(xn−1 − xn−2)⟩
≤ ∥xn − z∥2 + α2

n∥xn − xn−1∥2 + 2αn∥xn − z∥∥xn − xn−1∥+ δ2n∥xn−1 − xn−2∥2

+2δn∥xn − z∥∥xn−1 − xn−2∥+ 2αnδn∥xn − xn−1∥∥xn−1 − xn−2∥.(3.9)

Substituting (3.9) into (3.6), we have

∥xn+1 − z∥2

≤ ∥xn − z∥2 + α2
n∥xn − xn−1∥2 + 2αn∥xn − z∥∥xn − xn−1∥+ δ2n∥xn−1 − xn−2∥2

+2δn∥xn − z∥∥xn−1 − xn−2∥+ 2αnδn∥xn − xn−1∥∥xn−1 − xn−2∥
−(1− µ)∥xn+1 − yn∥2 − (1− µ)∥wn − yn∥2 − 2λn∥(I − JG2

rn )Ayn∥2.(3.10)

Since
∑∞

n=1 αn∥xn − xn−1∥ < +∞,
∑∞

n=1 δn∥xn−1 − xn−2∥ < +∞ and limn→∞ ∥xn − z∥
exists, by (3.10), we obtain

lim
n→∞

∥xn+1 − yn∥ = 0

and

lim
n→∞

∥wn − yn∥ = 0.(3.11)

We observe that

∥wn − xn∥ = ∥xn + αn(xn − xn−1) + δn(xn−1 − xn−2)− xn∥
≤ αn∥xn − xn−1∥+ δn∥xn−1 − xn−2∥
→ 0.(3.12)

From (3.11) and (3.12), we have

∥xn − yn∥ ≤ ∥xn − wn∥+ ∥wn − yn∥
→ 0.(3.13)

Again from (3.10) and Lemma 3.8, we obtain

lim
n→∞

∥Ayn − JG2
rn Ayn∥ = 0.(3.14)

Using Lemma 2.2 (iii), we have

lim
n→∞

∥Ayn − JG2
r Ayn∥ ≤ lim

n→∞
∥Ayn − JG2

rn Ayn∥ = 0.

From (3.13) and (3.14), we have

∥Axn − JG2
rn Axn∥ ≤ ∥Axn − JG2

rn Axn −Ayn + JG2
rn Ayn∥+ ∥Ayn − JG2

rn Ayn∥
≤ 2∥A∥∥xn − yn∥+ ∥Ayn − JG2

rn Ayn∥
→ 0.

By Lemma 2.2 (iii), we also have

lim
n→∞

∥Axn − JG2
r Axn∥ ≤ lim

n→∞
∥Axn − JG2

rn Axn∥ = 0.(3.15)
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Since JG1
rn is nonexpansive and from (3.11), (3.14), we have

∥yn − JG1
rn yn∥ = ∥JG1

rn (wn − λnA
∗(I − JG2

rn )Ayn)− JG1
rn yn∥

≤ ∥wn − λnA
∗(I − JG2

rn )Ayn − yn∥
≤ ∥wn − yn∥+ λn∥A∗(I − JG2

rn )Ayn∥
≤ ∥wn − yn∥+ λn∥A∥∥(I − JG2

rn )Ayn∥
→ 0.

By Lemma 2.2 (iii), we have

lim
n→∞

∥yn − JG1
r yn∥ ≤ lim

n→∞
∥yn − JG1

rn yn∥ = 0.(3.16)

From (3.13) and (3.16), we have

∥xn − JG1
r xn∥ ≤ ∥xn − yn∥+ ∥yn − JG1

r yn∥+ ∥JG1
r yn − JG1

r xn∥
≤ 2∥xn − yn∥+ ∥yn − JG1

r yn∥
→ 0.(3.17)

Since {xn} is bounded, then there exists a subsequence {xni
} of {xn} and z∗ ∈ H such

that xni ⇀ z∗. As A is a bounded linear operator, we have Axni ⇀ Az∗. Using (3.15),
(3.17), Lemma 2.1 and Lemma 2.2 (ii), we can deduce that z∗ ∈ Ω. By Lemma 2.6, we can
conclude that the sequence {xn} converges weakly to a point in Ω. The proof is finished.

□

4. NUMERICAL ILLUSTRATIONS

In this section, we provide a numerical example in finite dimensional spaces to com-
pare convergence behavior of our proposed Algorithm 3.1 with Algorithm of Byrne et al.
[6] and Algorithm of Chuang [12]. Let H1 = H2 = R3 and define the operators A, G1 and
G2, respectively, as follows:

A =

6 3 1
8 7 5
3 6 2

, G1 =

6 0 0
0 4 0
0 0 3

, G2 =

7 0 0
0 5 0
0 0 2

.

We choose the parameters in Algorithm 3.1 by γ = 2, ℓ = 0.1, µ = 0.95, αn = 1
(20n+100)7 ,

rn = 1 and δn = 1
(n+100)7 .

In Algorithm of Byrne et al. [6], we set λ = 0.1
∥A∥2 .

In Algorithm of Chuang [12], we set θ = 0.95, λn = ρ
∥A∥2 , ρ = 0.95

and θn =

{
min{ 1

n2∥xn−xn−1∥2 , θ} if xn ̸= xn−1,

θ otherwise.
. We choose x−1 = (−2,−14, 6), x0 =

(13,−12, 25) and x1 = (−30,−3, 8). We use the stopping condition En = ∥xn+1−xn∥ < ε.
Then, we test the convergence behavior with different ε. The outcomes are reported in
Table 1 and Figure 2.
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TABLE 1. The number of iterations and CPU time with different ε

ε
Byrne et al. [6]’s Algorithm Chuang [12]’s Algorithm Algorithm 3.1
Iteration CPU time Iteration CPU time Iteration CPU time

10−12 23 0.0080 24 0.0013 22 0.0925
10−17 31 0.0183 33 0.0016 30 0.0082
10−21 38 0.0212 41 0.0015 36 0.0087
10−27 47 0.0038 52 0.0014 45 0.0058
10−30 61 0.0027 67 0.0019 58 0.0079
10−40 69 0.0035 76 0.0032 65 0.0186

Next, we demonstrate the numerical results with various ε values generated by Algo-
rithm 3.1, Byrne et al. [6]’s Algorithm and Chuang [12]’s Algorithm as follows:

(A) ε = 10−12 (B) ε = 10−17

(C) ε = 10−21 (D) ε = 10−27

(E) ε = 10−30 (F) ε = 10−40

FIGURE 1. Errors of all algorithms with different ε

From Table 2 and Figure 2, we observe that our Algorithm 3.1 has less iterations than
Byrne et al. [6]’s Algorithm and Chuang [12]’s Algorithm.
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5. APPLICATIONS

In this section, we present applications in image deblurring and data classification. In
the first part, we consider special cases of the split variation inclusion problem to the split
feasibility problem. The second part presents image deblurring and the third part presents
the diabetes prediction in data classification problems. All numerical experiments were
conducted on MacBook Pro M1 with ram 8 GB and were implemented in Matlab R2022b.

5.1. Application to the split feasibility problem. Consider the following split feasibility
problem (SFP) suggested by Censor and Elfving [8].

find x∗ ∈ C such that Ax∗ ∈ Q,(5.18)

where C and Q are closed convex subsets of real Hilbert spaces H1 and H2, respectively,
and A : H1 → H2 is a bounded linear operator.

The definition of the subdifferential ∂g for a proper lower semicontinuous convex func-
tion g : H → (−∞,∞) is defined by

∂g(x) = {z ∈ H : g(x)− g(y) ≤ ⟨z, x− y⟩ ∀y ∈ H},
for all x ∈ H. Now, let C be a nonempty closed convex subset of H, and let iC be the
indicator function of C which is defined as follows:

iC(x) =

{
0 if x ∈ C,

∞ if x /∈ C.

Further, the normal cone NCu of C at u ∈ C is defined as

NCu = {z ∈ H : ⟨z, v − u⟩ ≤ 0, ∀v ∈ C}.
It is known that iC is a proper, lower semicontinuous and convex function on H, hence,
the subdifferential ∂iC is a maximal monotone operator. Thus, the resolvent J∂iC

r for each
r > 0 can be defined as

J∂iC
r (x) = (I + r∂iC)

−1(x)

for all x ∈ H.
It is known that for any x ∈ C, ∂iCx = NCx. Putting y = J∂iC

r x = (I + r∂iC)
−1(x),

r > 0, we obtain

x ∈ y + r∂iC(y) ⇔ x− y ∈ r∂iCy

⇔ ⟨x− y, z − y⟩ ≤ 0 ∀z ∈ C

⇔ y = PCx.

Consequently, we have the following results:

Algorithm 5.1. Given γ > 0, ℓ ∈ (0, 1) and µ ∈ (0, 1). Let {λn}, {αn} and {δn} be nonnegative
real sequences. Let x−1, x0, x1 ∈ H1 be arbitrary. For n ≥ 1, compute xn+1 by

wn = xn + αn(xn − xn−1) + δn(xn−1 − xn−2)

yn = PC(wn − λnA
∗(I − PQ)Awn)

xn+1 = PC(wn − λnA
∗(I − PQ)Ayn)

where λn = γℓmn and mn is the smallest nonnegative integer satisfying the following:

λn⟨A∗(I − PQ)Awn −A∗(I − PQ)Ayn, xn+1 − yn⟩

≤ µ

2
(∥wn − yn∥2 + ∥xn+1 − yn∥2).
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Theorem 5.2. Let {xn} be a sequence defined by Algorithm 5.1. If
∑∞

n=1 αn < +∞ and∑∞
n=1 δn < +∞, then {xn} converges weakly to a solution in (5.18).

5.2. Application to image deblurring. In this section, we present numerical experiments
to an image debluring. Let C = [0, 255]D with D = M ×N where M is the pixels of width
and N is the pixels of height of color image. Consider the minimization problem:

(5.19) min
x∈C

∥Ax− y∥2.

Therefore, the problem (5.18) can be reduced to (5.19) when Q = {y} and C = [0, 255]D.
We will compare the following methods with x−1 = (1, 1, 1, ..., 1) ∈ RN , x0 = (0, 0, 0, ..., 0) ∈
RN and x1 = (1, 1, 1, ..., 1) ∈ RN . We set parameters by

Algorithm of Byrne et al. [6]: λ = 0.3
∥A∥2 ;

Algorithm of Chuang [12]: θn = 1
n1.1∥xn−xn−1∥2 and ρ = 0.9;

Algorithm of Vinh et al. [37]: αn = 1
n1.1∥xn−xn−1∥2 and ρn = 0.03;

Algorithm of Dong et al. [15]: θ = 0.8, γ = 1 and α = 0.2;
Algorithm 5.1: γ = 0.6, ℓ = 0.8, µ = 0.9, αn = 1

(20n+100)7 and δn = 1
(n+100)7 .

We consider motion blur with motion length of 45 pixels and motion orientation 180◦,
the image size 273× 227 for RGB images.

(A) (B)

FIGURE 2. (A) The original image and (B) Motion blurred image

To measure the restored images, we use the peak-signal-to-noise ratio (PSNR) [35] de-
fined by

PSNR = 10 log10

(
2552

MSE

)
(5.20)

where MSE= ∥xn−x∥2 with x is an original image. We also use structural similarity index
measure (SSIM) [38] for measuring the similarity between two images. From definitions,
it is clear that the high PSNR and SSIM values show the quality of restored images. We
obtain numerical results as follows:
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TABLE 2. The comparison of PSNR, SSIM and CPU time of the restored
images

Algorithms PSNR SSIM CPU time
[6, Algorithm 3.1] 24.8103 0.7190 12.0814
[12, Algorithm 3.1] 18.3787 0.5721 24.4417
[37, Algorithm 3.1] 25.9610 0.7169 22.6684
[15, Algorithm 1] 24.6059 0.7412 19.0017

Algorithm 5.1 26.6238 0.7551 20.4592

From Table 2, it appears that our Algorithm 5.1 has more efficient than others since
PSNR and SSIM values of Algorithm 5.1 have the highest number in the experiment for
500 iterations.

We next demonstrate the figures of restored images.

(A)
PSNR=24.8103

(B)
PSNR=18.3787

(C)
PSNR=25.9610

(D)
PSNR=24.6059

(E)
PSNR=26.6238

FIGURE 3. (A),(B),(C),(D) and (E) are the restored images by [6, Algo-
rithm 3.1], [12, Algorithm 3.1], [37, Algorithm 3.1], [15, Algorithm 1] and
Algorithm 5.1, respectively

(A) PSNR plotting (B) SSIM plotting

FIGURE 4. Graphs of PSNR and SSIM for each algorithm

In Figures 3 and 4, it is shown that Algorithm 5.1 outperforms other algorithms in terms
of PSNR and SSIM.
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5.3. Application to the diabetes prediction. In this section, we apply Algorithm 5.1 for
data classification by using the extreme learning machine (ELM).

Consider a training set {(xn, yn) : xn ∈ RN , yn ∈ RM , n = 1, 2, 3, ...,W} where W is the
distinct samples, xn represents an input training data and yn is a training target. In the
context of ELM with a single hidden layer, the output at the i-th hidden node is defined
as:

hi(x) = U(⟨ai, x⟩+ bi),

where U is an activation function, ai and bi are the weight and the bias at the i-th hidden
node, respectively.

The output function of single-hidden layer feed forward neural networks (SLFNs) with
L hidden nodes is defined as:

On =

L∑
i=1

ωihi(xn),

where ωi is the optimal output weight at the i-th hidden node. The hidden layer output
matrix A is defined as follows:

A =

 U(⟨a1, x1⟩+ b1) · · · U(⟨aL, x1⟩+ bL)
...

. . .
...

U(⟨a1, xW ⟩+ b1) · · · U(⟨aL, xW ⟩+ bL)


The main aim of ELM is to compute an optimal weight ω = [ω1, ..., ωL]

T such that
Aω = χ, where χ = [t1, ..., tW ]T is the training target data. A model used to find the
solution ω can be transformed into a constraint minimization problem as follows:

min
ω∈C

1

2
∥Aω − χ∥2, C = {ω|∥ω∥1 ≤ ξ},(5.21)

where ξ is a positive constant. In particular, if C = {ω|∥ω∥1 ≤ ξ} and Q = {χ} then (5.21)
can be considered as the SFP.

We employ the binary cross-entropy loss function in conjunction with the sigmoid ac-
tivation function defined by

Loss = − 1

J

J∑
j=1

vj log v̂j + (1− vj) log(1− v̂j)

where v̂j and vj are the j-th scalar value in the model output and the corresponding target
value, respectively. The number of scalar values in the model output are defined by J .

The precision and recall can justify performance evaluation in classification. Recall
(Rec) also known as the True Rate, measures the accuracy of predictions in positive classes
and represents the percentage of correctly predicted positive observations. Accuracy
(Acc), prediction (Pre) and F1-score can be calculated using the equation below: [18]

Pre =
TP

TP + FP
× 100%

Rec =
TP

TP + FN
× 100%

Acc =
TP + TN

TP+ FP + TN+ FN
× 100%

F1-score =
2× (Precision× Recall)

Precision + Recall
,

where a confusion matrix for original and predicted classes are shown in terms of TP =
True Positive, TN =True Negative, FP = False Positive and FN= False negative.
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Firstly, we mention about diabetes which is a chronic, metabolic condition character-
ized by elevated levels of blood glucose (or blood sugar). Over time, this condition can
severely damage vital organ such as the heart, blood vessels, eyes, kidneys and nerves.
The most prevalent form is type 2 diabetes, typically diagnosed in adults, which occurs
when the body either becomes resistant to insulin or doesn’t produce enough. Over the
past three decades the prevalence of type 2 diabetes has risen dramatically in countries
of all income levels. Early predict of diabetes is essential because it can prevent severe
damage to many of the body’s systems.

In this numerical experiments, we use the PIMA Indians diabetes dataset [39]. This
dataset comprises 768 pregnant female patients which 500 were non-diabetics and 268
were diabetics. This dataset contains 9 attributes are Pregnancies, Glucose, Blood Pres-
sure, Skin Thickness, Insulin, BMI, Diabetes Pedigree Function, Age and Outcome (the
predicted attribute). We show visualization of PIMA Indians diabetes dataset in Table 3.

TABLE 3. Overview of all attributes used in training the models

Attributes Mean SD CV Min Max
The number of pregnancies 3.85 3.37 11.35 0 17
Plasma glucose 120.89 31.97 1022.25 0 199
Diastolic blood pressure (mmHg) 69.11 19.36 374.65 0 122
Triceps skin fold thickness (mm) 20.54 15.95 254.47 0 99
2-Hour serum insulin (Mu.U/ml) 79.80 115.24 13281.18 0 846
BMI 31.99 7.88 62.16 0 67.1
Diabetes pedigree function 0.47 0.33 0.11 0.08 2.42
Age 33.24 11.76 138.30 21 81

SD: Standard deviation; CV: Coefficient of variation.

In particular, we apply our algorithms to optimize weight parameter in training data
for machine learning by using 5-fold cross-validation in extreme learning machine (ELM).
We start computation by setting the activation function as sigmoid, hidden nodes L = 60,
and the parameter is ξ = 0.7. We compare our algorithm with the results of Byrne et al.
[6] and Chuang [12].

For comparison, we set x−1 = x0 = x1 = (1, 1, 1, ..., 1), γ = 1, ℓ = 0.3, µ = 0.7,
αn = 1

(n+1)7 and δn = 1
(n+1)6 in Algorithm 5.1.

In [6, Algorithm 3.1], we set x1 = (1, 1, 1, ..., 1) and λ = 0.1
∥A∥2 .

In [12, Algorithm 3.1], we set x0 = (1, 1, 1, ..., 1), x1 = (0, 0, 0, ..., 0), θ = 0.5, λn = ρ
∥A∥2

and ρ = 0.1, θn =

{
min{ 1

n3∥xn−xn−1∥2 , θ} if xn ̸= xn−1,

θ otherwise.

We compare the performance of each algorithm for 100 and 200 iterations. The numer-
ical results are reported in Table 4 and Table 5, respectively.

TABLE 4. The performance of each algorithm for 100 iterations

Algorithms Precision Recall F1-score Accuracy
[6, Algorithm 3.1] 78.56 100 87.99 78.56
[12, Algorithm 3.1] 78.56 100 87.99 78.56

Algorithm 5.1 79.34 100 88.48 79.54
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TABLE 5. The performance of each algorithm for 200 iterations

Algorithms Precision Recall F1-score Accuracy
[6, Algorithm 3.1] 78.56 100 87.99 78.56

[12, Algorithm 3.1] 79.08 100 88.32 79.21
Algorithm 5.1 79.34 100 88.48 79.54

In Tables 4 and 5, we show that our algorithm obtain the best accuracy at 100 and 200
iterations. We observe that Algorithm 5.1 has a better accuracy than other algorithms.

Next, we show the performance with the highest accuracy of each algorithm for pre-
diction in terms of iterations. The comparison are presented in Table 6. From Table 6, we

TABLE 6. The performance of each algorithm

Algorithms Iter. Trainning time Pre Rec F1-score Acc
[6, Algorithm 3.1] 457 0.4304 79.34 100 88.48 79.54

[12, Algorithm 3.1] 257 0.4791 79.34 100 88.48 79.54
Algorithm 5.1 54 0.5231 79.34 100 88.48 79.54

observe that Algorithm 5.1 has less iterations than [6, Algorithm 3.1] and [12, Algorithm
3.1] with the same precision, recall, F1-score and accuracy. This shows that our algorithm
has the highest probability of classification for the PIMA Indians diabetes dataset com-
pared to other algorithms.

Next, we present graphs of accuracy and loss of training data and testing data for over-
fitting of Algorithm 5.1.

FIGURE 5. Accuracy of Algorithm 5.1

Figures 5 and 6 show the convergence behaviour of accuracy and loss of Algorithm
5.1. We see that it has a high gap between training and validation. This shows that a
few training data set are inadequated to train the model. However, graphs of accuracy
and loss tend in the same way, which show that Algorithm 5.1 can still classify the PIMA
Indians diabetes dataset.
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FIGURE 6. Loss of Algorithm 5.1

6. CONCLUSIONS

In this paper, we have proposed iterative schemes with new inertial technique and
linesearch stepsize for split variational inclusion problem. Under some conditions, the
weak convergence theorem are obtained in the framework of Hilbert spaces. Applications
of our obtained results to split feasibility problem have been provided. Furthermore, we
apply the proposed algorithm to image deblurring and the data classification of diabetes
prediction.
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