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A New Viscosity Approximation Method with Inertial
Technique for Convex Bilevel Optimization Problems and
Applications

PITI THONGSRI and SUTHEP SUANTAI

ABSTRACT. This paper presents and analyzes a new viscosity approximation method with the inertial tech-
nique for finding a common fixed point of a countable family of nonexpansive mappings and then its strong
convergence theorem is established under some suitable conditions. As a consequence, we employ our pro-
posed algorithm for solving some convex bilevel optimization problems and then apply it for solving regression
of a graph of cosine function and classification of some noncommunicable diseases by using the extreme learn-
ing machine model. We perform a comparative analysis with other algorithms to demonstrate the performance
of our approach. Our numerical experiments confirm that our proposed algorithm outperforms other methods
in the literature.

1. INTRODUCTION

Bilevel optimization is a type of mathematical optimization problem where one op-
timization problem is contained within another optimization problem. The solution to
the outer problem is dependent on the solution to the inner problem. The difficulty lies
in finding the optimal solution to both the leader and the follower problem simultane-
ously. Bilevel optimization plays an important role in a variety of real-world applications,
including resource allocation in supply chain management, machine learning models for
regression and classification of some noncommunicable diseases, pricing strategies in eco-
nomics, optimization of power systems and optimization in traffic management.

In recent years, bilevel optimization has gained much attention and is one of the ac-
tive research areas which can be applied in various fields. Hence, bilevel optimization is
considered as an important and relevant tool in many practical applications.

Let H be a Hilbert space over the real numbers and let f, g be functions that map from
H to R. A convex bilevel minimization problem is a special type of optimization problem
for which one problem is embedded within another problem. The outer level problem is
the constraint minimization problem of the following form:

(1.1) min
x∈X∗

h(x),

where h : Rn → R is a continuously differentiable function such that ∇h is Lipschitz
continuous with constant Lh and strongly convex with parameter σ > 0 while X∗ is the
set of all minimizers of the inner level optimization problem of the following form:

(1.2) min
x∈Rn

{f(x) + g(x)}.

For solving problem (1.2), we normally assume the following assumption:
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(a) f : Rn → R is convex and differentiable for which ∇f is Lf−Lipschitz continuous,
that is,

∥∇f(x)−∇f(y)∥ ≤ Lf∥x− y∥ for all x, y ∈ Rn;

(b) g : Rn → R ∪ {∞} is proper convex and lower semi-continuous.
The solution to equation (1.2) can be described according to Theorem 16.3 of Bauschke

and Combettes [5] as follows:

p ∈ X∗ if and only if 0 ∈ ∂g(p) +∇f(p),

where ∇f is the gradient of f and ∂g is the subdifferential of g. On the other hand,
problem (1.2) is equivalent with following fixed point problem:

p ∈ X∗ if and only if p = proxcg(I − c∇f)(p),

where c > 0 and proxcg(x) = argminy∈H(g(y)+ 1
2c∥x−y∥2). The operator proxcg(I−c∇f)

is called the forward-backward operator of f and g with respect to c. We also know that
proxcg(I−c∇f) is a nonexpansive operator when c ∈ (0, 2/L) and L is a Lipschitz constant
of ∇f . From basic principle of optimization, we know that p ∈ X∗ is a minimizer of
problem (1.1) if and only if

⟨∇h(p), x− p⟩ ≥ 0 for all x ∈ X∗.(1.3)

Over the last ten years, numerous researchers have been interested to find the optimal
solutions for problem (1.2). A technique known as Forward-Backward Splitting (FBS) was
presented by Lions and Mercier [15] as a straightforward algorithm to solve problem (1.2).
Their algorithm was given by

xn+1 = proxcng(I − cn∇f)(xn),(1.4)

where the step-size cn ∈ (0, 2/L).

The concept of the inertial technique was first introduced by Polyak [19] to speed up
the convergence rate of algorithms. Since then, this technique has become widely utilized
for this purpose.

For example, Beck and Teboulle [6] introduced a fast iterative shrinkage-thresholding
algorithm (FISTA) by using this technique for solving problem (1.2) as described by the
following:

x1 = u0 ∈ C, t1 = 1,

un = proxαg(I − α∇f)(xn), α > 0,

tn+1 =

√
1 + 4t2n + 1

2
,

θn =
tn − 1

tn+1
,

xn+1 = un + θn(un − un−1).

Furthermore, they demonstrated that FISTA exhibits superior convergence behavior
compared to other methods.

Recently, several researchers, such as Jailoka et al. [14], Puangpee and Suantai [20],
Thongsri et al. [27], Bussaban et al. [9], J. A. Abuchu et al. [1], and F. Akutsah et al.
[2], have incorporated the inertial technique into their work. They introduced common
fixed point algorithms for a countable families of nonexpansive operators and proved
convergence results under the NST-condition (I), NST⋆-condition, and the condition (Z).
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Furthermore, they successfully applied their algorithms to solve convex minimization
problems.

In 2017, Sabach and Shtern [21] proposed a novel technique named Sequential Aver-
aging Method (SAM) to solve convex bilevel optimization problems. They adapted a
technique from [30] that was used to solve a specific type of fixed point problem. Later,
they proposed the Bilevel Gradient Sequential Averaging Method (BiG-SAM) to solve the
convex bilevel optimization problems (1.1) and (1.2). BiG-SAM was defined by Algorithm
1.

Algorithm 1 Bilevel Gradient Sequential Averaging Method (BiG-SAM)

(1)Input : c ∈ (0, 1/Lf ), s ∈ (0, 2/(σ + Lh)) and {αk}k∈N ⊂ (0, 1].
(2)Initialization:choose x1 ∈ Rn.
(3) General step: (k = 1, 2, ...):

vk = proxcg(xk − c∇f(xk)),

uk = xk − s∇h(xk),

xk+1 = αkuk + (1− αk)vk,

where ∇h is the gradient of h.

Then they proved that the sequence {xk} generated by the BiG-SAM algorithm con-
verges to a solution of problem 1.1 and 1.2 under some control conditions.

In 2019, Shehu et al. [23] employed an inertial technique to enhance the convergence
behavior of the BiG-SAM algorithm. They introduced a new algorithm called the inertial
Bilevel Gradient Sequential Averaging Method (iBiG-SAM) which was defined as Algo-
rithm 2:

Algorithm 2 Inertial Bilevel Gradient Sequential Averaging Method (iBiG-SAM)

(1) Input: α ≥ 3, c ∈ (0, 1/Lf ), and s ∈ (0, 2/(σ + Lh)).
(2) Initialization: choose x0, x1 ∈ Rn.
(3) Step 1 For k = 1, 2, ...,

µk =

{
min{ k

k+α−1 ,
γk

∥xk−xk−1∥}, if xk ̸= xk−1,
k

k+α−1 , otherwise.

(4) Step 2 Compute:

vk = xk + µk(xk − xk−1),

yk = proxcg(vk − c∇f(vk)),

zk = vk − s∇h(vk),

xk+1 = αkzk + (1− αk)yk,

where ∇h is the gradient of h.

Very recently, a novel algorithm for solving convex bilevel optimization problems was
introduced by Duan and Zhang [11]. This algorithm, called the alternated inertial Bilevel
Gradient Sequential Averaging Method (aiBiG-SAM), is based on the proximal gradient
algorithm and it was defined by the following iterative algorithm.
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Algorithm 3 The alternated inertial Bilevel Gradient Sequential Averaging Method
(aiBiG-SAM)

(1) Input: α ≥ 3, c ∈ (0, 1/Lf ) and s ∈ (0, 2/(σ + Lh)). Set λ > 0.
(2) Initialization: choose x0, x1 ∈ Rn.
(3) Step 1 For (k = 1, 2, ...):

uk =

{
xk + µk(xk − xk−1)), if k is odd,
xk, if k is even.

When k is odd, choose µk such that 0 ≤ |µk| ≤ θk where θk is defined by

θk =

{
min{ k

k+α−1 ,
γk

∥xk−xk−1∥}, if xk ̸= xk−1,
k

k+α−1 , otherwise.

(4) Step 2 Compute:

yk = proxcg(uk − c∇f(uk)),

zk = uk − s∇h(uk),

xk+1 = αkzk + (1− αk)yk.

(5) Step 3 If ∥xk − xk−1∥ < λ, then stop.

They also discussed strong convergence behavior of the proposed method under some
conditions.

Motivated by these previous works, our objective is to introduce a more efficient al-
gorithm for solving convex bilevel problems (1.1) and (1.2). We aim to establish a strong
convergence theorem for the proposed algorithm under some suitable conditions. Fur-
thermore, we apply this algorithm to solve classification and data prediction problems.
The paper is structured as follows. In Section 2, we provide a description of the nota-
tions and useful lemmas that will be employed in subsequent sections. In Section 3, we
thoroughly discuss and analyze the convergence properties of our proposed algorithm.
Moving forward, in Section 4, we present various applications of the fixed point results
obtained in Section 3, specifically for solving regression and classification problems. Ad-
ditionally, we include numerical experiments on regression and classification problems
within Section 4. Finally, we present the concluding remarks of our paper in Section 5.

2. PRELIMINARIES

Consider a real Hilbert space H equipped with a norm ∥ · ∥ and an inner product ⟨·, ·⟩.
Let C be a nonempty closed convex subset of H . The metric projection onto C, denote
by PC , is defined for each x ∈ H , PCx is the unique element in C such that ∥x − PCx∥ =
infy∈C ∥x− y∥. It is known that

x = PCx ⇔ ⟨x− x, y − x⟩ ≤ 0,(2.5)

for all y ∈ C; see [25]. A mapping T : C → C is called an L-Lipschitz operator if there exists
L > 0 such that ∥Tx−Ty∥ ≤ L ∥x− y∥ for all x, y ∈ C. If L = 1, the operator T is referred
to as a nonexpansive operator. A point x ∈ C is said to be a fixed point of T if Tx = x. The
fixed point set of T is denoted by F (T ), where F (T ) := {x ∈ C : Tx = x}. Let {Tn} and
Ω be families of nonexpansive mappings from C into itself, such that ∅ ̸= F (Ω) ⊂ Γ :=⋂∞

n=1 F (Tn). Here, F (Ω) represents the set of all common fixed points of the operators in
Ω, and Γ denotes the intersection of the fixed point sets F (Tn) for all n ∈ N. The sequence
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{Tn} satisfies the NST-condition(I) with respect to Ω [18] if, for every bounded sequence
{vn} in C,

lim
n→∞

∥vn − Tnvn∥ = 0 implies lim
n→∞

∥vn − Tvn∥ = 0

for all T ∈ Ω. If Ω is singleton, denoted as Ω = T , then {Tn} satisfies the NST-condition(I)
with respect to T . It is well known that if g : Rn → R ∪ {∞} is a proper lower semi-
continuous convex function, then for all x ∈ R the proxg(x) exists and is unique [4]. The
solution to problem (1.1) can be characterized by Theorem 16.3 of Bauschke and Com-
bettes [5] as follows:

p is a minimizer of (f + g) if and only if 0 ∈ ∂g(p) +∇f(p)

where ∇f represents the gradient of f and ∂g denotes the subdifferential of g. The subd-
ifferential of g at p, denoted by ∂g(p), is defined as

∂g(p) := {u : g(x) ≥ ⟨u, x− p⟩+ g(p) for all x}.

Observe that the subdifferential operator ∂g is maximal monotone, as discussed in [8].
Furthermore, the solution to problem (1.1) can be expressed as the solution to the follow-
ing fixed point problem:

p is a minimizer of (f + g) if and only if p = proxcg(I − c∇f)(p).

where c > 0 and proxcg = (I + ∂g)−1. It is also known that proxg(x) exists and is unique
for each x ∈ Rn, as discussed in [7], and proxcg(I − c∇f) is a nonexpansive mapping
when c ∈ (0, 2/L). The operator proxcg(I − c∇f) is referred to as the forward-backward
operator of f and g with respect to c. The following lemma is needed to prove our main
result.

Lemma 2.1. [9] Let f be a convex differentiable function from Rn into R such that ∇f is Lipschitz
continuous with constant L > 0, and g is a proper convex and lower semi-continuous function
from Rn into R ∪ {∞}. Let T := proxcg(I − c∇f) and Tn := proxcng(I − cn∇f), where
c, cn ∈ (0, 2/L) with cn → c as n → ∞. Then {Tn} satisfies the NST-condition (I) with T .

Definition 2.1. [3, 4] A sequence {Tn : H → H} with a nonempty common fixed point set
is said to satisfy the condition (Z) if {xn} is a bounded sequence in H such that

lim
n→∞

∥xn − Tnxn∥ = 0,

it follows that every weak cluster point of {xn} belongs to
⋂∞

n=1 F (Tn).

It is well known that I −T is demiclosed when T : H → H is a nonexpansive operator.
The following remark is obtained directly by above fact.

Remark 2.1. If {Tn} is a sequence of nonexpansive operators satisfies the NST-condition (I)
with respect to T where T is the nonexpansive operator, then {Tn} satisfies the condition
(Z).

The following useful facts are crucial for proving our main result.

Lemma 2.2. [25] Let H be a real Hilbert space. Then the following results hold:
(i) ∥x± y∥2 = ∥x∥2 ± 2⟨x, y⟩+ ∥y∥2 ∀x, y ∈ H ;

(ii) ∥x+ y∥2 ≤ ∥x∥2 + 2 ⟨y, x+ y⟩;
(iii) for all t ∈ [0, 1] and x, y ∈ H ,

∥tx+ (1− t)y∥2 = t∥x∥2 + (1− t)∥y∥2 − t(1− t)∥x− y∥2.
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Lemma 2.3. [22] Let {an} be a sequence of nonnegative real numbers and {bn} a sequence of real
numbers. Let {tn} be a sequence of real numbers in (0, 1) such that

∑∞
n=1 tn = ∞. Assume that

an+1 ≤ (1− tn)an + tnbn, n ∈ N.

If lim supi→∞ bni
≤ 0 for every subsequence {ani

} of {an} satisfying

lim inf
i→∞

(ani+1 − an) ≥ 0,

then limn→∞ an = 0.

Proposition 2.1. [21] Suppose f : Rn → R is strongly convex with convexity parameter σ > 0
and continuously differentiable function such that ∇f is Lipschitz continuous with constant Lf .
Then, the mapping I − σ∇f is a contraction for all σ ≤ 2

Lf+ρ , where I is the identity operator.

That is ∥x− σ∇f(x)− (y − σ∇f(y))∥ ≤
√
1− 2σρLf

ρ+Lf
∥x− y∥, for all x, y ∈ Rn.

3. MAIN RESULTS

Throughout this section, we let {Tn : H → H} and Ω be families of nonexpansive
operators on a real Hilbert space H such that F (Ω) ⊂ Γ :=

⋂∞
n=1 F (Tn) and let S : H → H

be a k−contraction, where k ∈ (0, 1).
In order to find a common fixed point for a countable family of nonexpansive operators,

we propose a novel accelerated algorithm using inertial technique of FISTA and viscosity
approximation method. Subsequently, we establish a strong convergence theorem under
certain conditions. Let us now present our accelerated algorithm as follows:

Algorithm 4

(1) Initial. Take x0, x1 ∈ H arbitrarily and t1 = 0.
(2) For n ≥ 1, set

θn =

{
min{ tn−1

tn+1
, γnαn

∥xn−xn−1∥}, if xn ̸= xn−1,
tn−1
tn+1

, otherwise,
(3.6)

where tn+1 =
1+

√
1+4t2n
2 and {γn} ⊂ [0, 1).

(3) Step1. Calculate wn, un and xn+1 using:

wn = xn + θn(xn − xn−1)

un = αnS(wn) + (1− αn)Tnwn

xn+1 = (1− βn)un + βnTnun,(3.7)

where {αn}, {βn} ⊂ [0, 1].
Then, update n := n+ 1 and return to Step 1.

Theorem 3.1. Let H be a real Hilbert space, {Tn} be a family of nonexpansive mappings such
that ∅ ≠ Γ :=

⋂∞
n=1 F (Tn). Suppose that {Tn} satisfies condition (Z). Let {αn} and {βn} be

sequences in [0, 1] which satisfy the following conditions:
(i) limn→∞ αn = 0 and

∑∞
n=1 αn = ∞,

(ii) βn ∈ (a, b) for some a, b ∈ (0, 1) with a < b,
(iii) limn→∞ γn = 0.

Let S be a contraction on H and x0, x1 ∈ H be arbitrarily. Let {xn} be a sequence generated by
Algorithm 4. Then {xn} converges strongly to an element p ∈ Γ, where p = PΓS(p).
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Proof. Let p ∈ Γ be such that p = PΓS(p). First, we show that {xn} is bounded. By the
definition of wn and un, we have

∥wn − p∥ = ∥xn + θn(xn − xn−1)− p∥
≤ ∥xn − p∥+ θn∥xn − xn−1∥(3.8)

and

∥un − p∥ = ∥αnS(wn) + (1− αn)Tnwn − p∥
= ∥αn(S(wn)− S(p)) + αn(S(p)− p) + (1− αn)(Tnwn − p)∥
≤ αn∥S(wn)− S(p)∥+ αn∥S(p)− p∥+ (1− αn)∥Tnwn − p∥
≤ kαn∥wn − p∥+ αn∥S(p)− p∥+ (1− αn)∥wn − p∥
= (1− (1− k)αn)∥wn − p∥+ αn∥S(p)− p∥
≤ (1− (1− k)αn)(∥xn − p∥+θn∥xn − xn−1∥) + αn∥S(p)− p∥

≤ (1− (1− k)αn)∥xn − p∥+αn

(
θn
αn

∥xn − xn−1∥+∥S(p)− p∥
)
.(3.9)

From (3.8) and (3.9), we obtain

∥xn+1 − p∥ = ∥(1− βn)un + βnTnun − p∥
≤ (1− βn)∥un − p∥+ βn∥Tnun − p∥
≤ (1− βn)∥un − p∥+ βn∥un − ∥
= ∥un − p∥.(3.10)

From limn→∞
θn
αn

∥xn−xn−1∥ = 0, there exists a constant M > 0 such that θn
αn

∥xn−xn−1∥ ≤
M, for all n ≥ 1. Thus

∥xn+1 − p∥ ≤ (1− (1− k)αn)∥xn − p∥+ αn (M + ∥S(p)− p∥) .

By mathematical induction, we get

∥xn+1 − p∥ ≤ max

{
∥x0 − p∥, M + ∥S(p)− p∥

1− k

}
∀n ≥ 1.

This implies that {xn} is bounded and {wn}, {un}, {Tnwn}, {Tnun}, {S(wn)} are also bounded.

By definition of wn, for n ∈ N, we have

∥wn − p∥2 = ∥xn + θn(xn − xn−1)− p∥2

= ∥xn − p∥2 + 2θn ⟨xn − p, xn − xn−1⟩+ θ2n∥xn − xn−1∥2(3.11)
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By Lemma 2.2(ii), we get

∥un − p∥2 = ∥αnS(wn) + (1− αn)Tnwn − p∥2

= ∥αn(S(wn)− S(p)) + αn(S(p)− p) + (1− αn)(Tnwn − p)∥2

≤ ∥αn(S(wn)− S(p)) + (1− αn)(Tnwn − p)∥2

+ 2 ⟨αn(S(p)− p), un − p⟩
≤ αn∥S(wn)− S(p)∥2 + (1− αn)∥Tnwn − p∥2

+ 2αn ⟨S(p)− p, un − p⟩
≤ αnk∥wn − p∥2 + (1− αn)∥wn − p∥2 + 2αn ⟨S(p)− p, un − p⟩
≤ (1− αn + αnk)(∥xn − p∥2 + 2 ⟨xn − p, θn(xn − xn−1)⟩)
+ (1− αn + αnk)(θ

2
n∥xn − xn−1∥2) + 2αn ⟨S(p)− p, un − p⟩ .(3.12)

By Lemma 2.2(iii) and (3.12), we have

∥xn+1 − p∥2 = ∥(1− βn)un + βnTnun − p∥2

= ∥(1− βn)(un − p) + βn(Tnun − p)∥2

= (1− βn)∥un − p∥2 + βn∥Tnun − p∥2

− βn(1− βn)∥Tnun − un∥2

≤ ∥un − p∥2 − βn(1− βn)∥Tnun − un∥2

= (1− αn + αnk)(∥xn − p∥2 + 2 ⟨xn − p, θn(xn − xn−1)⟩)
+ (1− αn + αnk)(θ

2
n∥xn − xn−1∥2) + 2αn ⟨S(p)− p, un − p⟩

− βn(1− βn)∥Tnun − un∥2

≤ (1− αn + αnk)∥xn − p∥2 − βn(1− βn)∥Tnun − un∥2

+ αn(1− k)bn,(3.13)

where

bn = (
1

1− k
){2 ⟨S(p)− p, un − p⟩+ 2∥xn − p∥

(
θn
αn

∥xn − xn−1∥
)

+

(
θn
αn

∥xn − xn−1∥
)
θn∥xn − xn−1∥}.

It follows that

βn(1− βn)∥Tnun − un∥2 ≤ ∥xn − p∥2 − ∥xn+1 − p∥2 + αn(1− k)M ′,(3.14)

where M ′ = sup{bn : n ∈ N}.
Finally, we show that xn → p. To do this, we will apply Lemma 2.3 by setting an :=

∥xn − p∥2 and tn := αn(1− k). From (3.13), we have the following inequality:

an+1 ≤ (1− tn)an + tnbn.

Suppose {ani
} is a subsequence of {an} such that

lim inf
i→∞

(ani+1
− ani

) ≥ 0.(3.15)
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From (3.14), (3.15) and condition (i), we get

lim sup
i→∞

βni
(1− βni

)∥Tni
uni

− uni
∥2 ≤ lim sup

i→∞
(ani

− ani+1
+ αni

(1− k)M ′)

≤ lim sup
i→∞

(ani
− ani+1

)

+ (1− k)M ′ lim
i→∞

αni

= − lim inf
i→∞

(ani+1 − ani)

≤ 0.

The condition (ii) and above inequality lead to

lim
i→∞

∥Tni
uni

− uni
∥ = 0.(3.16)

By the choice of θn in (3.6) together with the condition (iii), we note that θn
αn

∥xn+1−xn∥ →
0 as n → ∞. We next show that lim supi→∞ bni

≤ 0. Obviously, it suffices to show that

lim sup
n→∞

⟨S(p)− p, uni
− p⟩ ≤ 0.

Let {unij
} be subsequence of {uni

} such that

lim
j→∞

〈
S(p)− p, unij

− p
〉
= lim sup

k→∞
⟨S(p)− p, uni

− p⟩

and unij
⇀ w for some w ∈ H . By (3.16), it follows from the condition (Z) of {Tn} that

w ∈ Γ. Here, the equation p = PΓS(p) yields

lim sup
n→∞

⟨S(p)− p, uni
− p⟩ = lim

k→∞

〈
S(p)− p, unij

− p
〉

= ⟨S(p)− p, w − p⟩
≤ 0.

By Lemma 2.3, we can conclude that xn → p as n → ∞. The proof is complete.
□

The following result is a consequence of Theorem 3.1 which asserts that Algorithm 5
strongly converges to a solution of convex bilevel problems (1.1) and (1.2). From now on,
we denote A the set of all solutions of problem (1.1).

Algorithm 5

(1) Initial. Take x0, x1 ∈ Rn arbitrarily and t1 = 0.
(2) For n ≥ 1, set

θn =

{
min{ tn−1

tn+1
, γnαn

∥xn−xn−1∥}, if xn ̸= xn−1,
tn−1
tn+1

, otherwise,
(3.17)

where tn+1 =
1+

√
1+4t2n
2 and {γn} ⊂ [0, 1).

(3) Step1. Calculate un, zn and xn+1 using:

wn = xn + θn(xn − xn−1)

un = αn(I − s∇h)(wn) + (1− αn)proxcng(I − cn∇f)wn

xn+1 = (1− βn)un + βnproxcng(I − cn∇f)un,(3.18)

where {αn}, {βn} ⊂ [0, 1] and s ∈ (0, 2/(σ + Lh)).
Then, update n := n+ 1 and return to Step 1.
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Theorem 3.2. Let h : Rn → R be a strongly convex function with a parameter σ > 0. Assume
that h is continuously differentiable and that its gradient ∇h is Lipschitz continuous with a con-
stant Lh. Suppose that f and g satisfy the assumptions of problem (1.2). Let {cn} be a sequence in
(0, 2/Lf ) such that cn → c as n → ∞ where c ∈ (0, 2/Lf ) and let {xn} be a sequence generated
by Algorithm 5. Then {xn} converges strongly to p ∈ A. Suppose the following conditions hold:

(i) limn→∞ αn = 0 and
∑∞

n=1 αn = ∞,
(ii) βn ∈ (a, b) for some a, b ∈ (0, 1) with a < b,

(iii) limn→∞ γn = 0.

Proof. Let T = proxcg(I − c∇f) and Tn = proxcng(I − cn∇f), n ∈ N. By Lemma 2.1
and Remark 2.1, we know that {Tn} satisfies the condition (Z). By Theorem 3.1, we get
that {xn} converges to p ∈ Γ = X∗ = argminx∈Rn(f(x) + g(x)). By Proposition 2.1

, S = I − s∇h(x) is a k-contraction with parameter k =
√

1− 2sσLh

σ+Lh
, whenever s ∈

(0, 2/(σ + Lh)). It remains to show that p = arcminx∈X∗h(x). By using p = PX∗S(p) and
(2.5), we have, for z ∈ X∗,

p = PΓS(p) ⇔ ⟨S(p)− p, z − p⟩ ≤ 0

⇔ ⟨p− s∇h(p)− p, z − p⟩ ≤ 0

⇔ ⟨s∇h(p), z − p⟩ ≥ 0

⇔ s⟨∇h(p), z − p⟩ ≥ 0

⇔ ⟨∇h(p), z − p⟩ ≥ 0.

Thus, p is an optimal solution for the problem (1.1). That is, xn → p ∈ A. □

4. APPLICATION

In this section, we utilize Algorithm 5 as a machine learning algorithm for regression
of a graph of the Cosine function. Additionally, we apply this algorithm for data classi-
fication using Extreme Learning Machine models and Single Hidden Layer Feedforward
Neural Networks. All computations and results are conducted using the MATLAB com-
puting environment on a system equipped with a laptop computer (Intel Core-i5 gen
8/8.00 GB RAM/Windows 11/64-bit).

Moreover we compare performance of our proposed algorithm with Big-SAM, iBig-
SAM, and aiBig-SAM.

Let us recall a concept of Extreme Learning Machine. Extreme Learning Machine
(ELM) [13] can be defined as follows: Let D = {(xk, qk) : xk ∈ Rn, qk ∈ Rm, k =
1, 2, . . . , N} be a training set of N distinct samples, xk is an input data and qk is a target.
A mathematical model for standard Single-hidden Layer Feedforward Networks (SLFNs)
with activation function φ(x) and M hidden nodes is given by

M∑
j=1

ξjφ(⟨aj , xk⟩+ cj) = ok, k = 1, . . . , N,

where ξj represents the weight vector connecting the j-th hidden node to the output node,
while aj denotes the weight vector connecting the j-th hidden node to the input node, cj
is the bias and ok is the output from the model. The goal of SLFNs is to predict these N

outputs such that
∑N

d=1 ∥ok − qk∥ = 0. That is,
M∑
j=1

ξjφ(⟨aj , xk⟩+ cj) = qk, k = 1, . . . , N.(4.19)
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We can rewrite the above system of linear equation by the following matrix equation:

Dξ = Q,(4.20)

where

D =

φ(⟨a1, x1⟩+ c1) · · · φ(⟨aM , x1⟩+ cM )
...

. . .
...

φ(⟨a1, xN ⟩+ c1) · · · φ(⟨aM , xN ⟩+ cM )


N×M

,

ξ = [ξT1 , . . . , ξ
T
M ]Tm×M , Q = [qT1 , . . . , q

T
N ]Tm×N .

The objective of an SLFNs is estimating ξj , aj and cj for solving (4.19) while ELM aims
to find only ξj with randomly aj and cj .

To solve the problem (4.20), we consider the following convex minimization problem:

min
ξ

∥Dξ −Q∥22 + λ ∥ξ∥1 ,(4.21)

where λ > 0 is called the regularization parameter. Let X∗ be a set of all solutions of
(4.21). We are interested to used the function h(ξ) = 1

2∥ξ∥
2
2 to select a solution in X∗

which satisfies the outer level convex minimization problem: minξ∈X∗ h(ξ). By setting,
g(ξ) = λ ∥ξ∥1 and f(ξ) = ∥Dξ −Q∥22, we employ Algorithm 5 to solve the convex bilevel
optimization problems (4.21).

4.1. Regression of Cosine Function. In our regression experiment involving a graph of
the Cosine function, we formed a training set by randomly choosing 10 distinct points.
To perform the regression, we employed the sigmoid function as our chosen activation
function. Additionally, we fixed the number of hidden nodes at M = 100 and set the
regularization parameter to λ = 1 × 10−5. We use mean squared error (MSE) to measure
performance for regression of each studied algorithm. MSE is given by the following:

Mean squared error(MSE) =
1

N

N∑
k=1

∥ok − qk∥2.

We set all control conditions for each algorithm as in Table 1.

TABLE 1. Algorithms and their setting control conditions.

Methods Setting
Algorithm 5 s = 0.01, cn = 1

Lf
, t1 = 0, αn = 1

88n , γn = 88·1020
n , βn = 0.9(n+1)

n

BiG-SAM s = 0.01, cn = 1
Lf

, αn = 2(0.1)

1−
2+cnLf

4

, γn = αn

n0.01

iBiG-SAM α = 3, s = 0.01, cn = 1
Lf

, αn = 2(0.1)

1−
2+cnLf

4

, γn = αn

n0.01

aiBiG-SAM α = 3, s = 0.01, cn = 1
Lf

, αn = 1
k+2 , γn = αn

n0.01

We then obtain the numerical experiments which show MSE and computational time
of each studied algorithm as in Table 2.

From Table 2 and Figure 1, we observe that Algorithm 5 gives a better performance to
predict a Cosine function than others while there is no significant difference in computa-
tional time.
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TABLE 2. Comparison of studied algotrithm for regression a cosine func-
tion with 300 iterations.

Methods Computational time MSE
Algorithm 5 0.0139 0.0483196

BIG-SAM 0.0121 0.5554438
iBIG-SAM 0.0125 0.5554769

aiBIG-SAM 0.0125 0.5583825

FIGURE 1. A regression of the cosine function at 300th iteration

FIGURE 2. A regression of the cosine function at 2000th iteration

4.2. Data Classification. In this section, we employ our proposed Algorithm 5 for data
classification of noncommunicable diseases and compare its performance with the others.
For our experiment, we use five datasets of noncommunicable diseases from
“https://www.kaggle.com/, accessed on 23 July 2021” and
“https://archive.ics.uci.edu/, accessed on 23 July 2021” as follows:

Breast Cancer dataset [28]: The dataset contains 11 attributes. This dataset involves
the classification of data into 2 distinct classes.

Diabetes dataset [24]: The dataset contains 9 attributes. This dataset is comprised of
two distinct classes for classification purposes.

Heart Disease UCI dataset [10]: The dataset contains 14 attributes. This dataset also
involves the classification of data into 2 classes.
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Parkinsons dataset [16]: The data set comprises 23 attributes. Within this particular
data set, we categorize information into two distinct classes.

Indian Liver Patient Dataset (ILPD) [12]: Within the dataset, there are 11 attributes
present. The data is divided into 2 distinct categories that we are able to classify. In Ta-
ble 3, we present the attributes count for each dataset along with the distribution of data
into training and testing sets. The training set comprises approximately 70% of the data,
while the remaining 30% is allocated to the testing set.

TABLE 3. Training and Testing sets of dataset.

Dataset Attributes Sample Train Sample Test
Breast Cancer 11 488 211

Diabetes 9 538 230
Heart Disease 14 213 90

Parkinson 23 135 60
Indian Liver Patient Dataset (ILPD) 11 408 175

We utilized the identical set of control parameters outlined in Table 1 from Section
4.1, including a consistent number of hidden nodes (M = 100) and a sigmoid activation
function. For each dataset specified in Table 3, we trained the model using the respec-
tive training set. The accuracy of the output data was determined through the following
calculation:

accuracy =
correctly predicted data

total data
× 100.

In Table 4, we present a comparison of the training accuracy, testing accuracy, and
iteration number of Algorithm 5 with other algorithms for each dataset.

TABLE 4. The iteration number of each algorithm with the best accuracy
on each dataset.

Dataset Algorithm Iteration no. Accuracy train Accuracy test
Algorithm 5 252 96.55 98.99

Breast BIG-SAM 1700 96.55 98.49
Cancer iBIG-SAM 1700 96.55 98.49

aiBIG-SAM 1700 96.55 98.49
Algorithm 5 98 77.11 81.98

Diabetes BIG-SAM 700 76.01 81.08
iBIG-SAM 696 76.37 81.08
aiBIG-SAM 1300 76.92 80.18
Algorithm 5 163 87.14 82.80

Heart BIG-SAM 1800 86.19 82.80
Disease iBIG-SAM 1756 86.19 82.80

aiBIG-SAM 2501 86.67 82.80
Algorithm 5 424 94.16 77.59

Parkinson BIG-SAM 659 86.13 77.59
iBIG-SAM 660 86.13 77.59
aiBIG-SAM 2240 87.59 77.59
Algorithm 5 376 71.46 72.25

Indian Liver Patient BIG-SAM 391 71.22 72.25
Dataset (ILPD) iBIG-SAM 486 71.46 72.25

aiBIG-SAM 790 71.46 72.25
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We observe from Table 4 that Algorithm 5 has a better performance in terms of accuracy
and number of iterations than BIG-SAM, iBIG-SAM, aiBIG-SAM in all experiments con-
ducted. We also see that Algorithm 5 requires the lowest number of iterations to achieve
the same accuracy as the other studied algorithms.

5. CONCLUSION

We have proposed and analyzed a strong convergence of a common fixed point algo-
rithm with the inertial technique for a countable family of nonexpansive operators and
then we applied it to tackle certain types of convex bilevel optimization problems. To
ensure the effectiveness of our proposed algorithm, we implement our method for data
classification of noncommunicable diseases and regression of a graph of cosine function.
From numerical experiments, we found that our proposed algorithm has a better perfor-
mance than other existing algorithms. For future work, we will employ our proposed
algorithms for prediction and classification of some noncommunicable diseases data col-
lected by Sriphat medical center, faculty of medicine, Chiang Mai University, Chiang Mai,
Thailand. We are also interested to create an application for noncommunicable diseases
prediction in Thailand.
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