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Efficient nonlinear conjugate gradient techniques for vector
optimization problems

JAMILU YAHAYA1,3 POOM KUMAM 1,2* and JAMILU ABUBAKAR 4

ABSTRACT. Conjugate gradient techniques are known for their simplicity and minimal memory usage. How-
ever, it is known that in the vector optimization context, the Polak-Ribiére-Polyak (PRP), Liu-Storey (LS), and
Hestenes-Stiefel (HS) conjugate gradient (CG) techniques fail to satisfy the sufficient descent property using
Wolfe line searches. In this work, we propose a variation of the PRP, LS, and HS CG techniques that we termed
YPR, YLS, and YHS, respectively. These techniques exhibit the desirable property of sufficient descent without
line search, except for the YHS which uses Wolfe line search for its sufficient descent property. Under certain
standard assumptions and employing strong Wolfe conditions, we investigate the global convergence proper-
ties of the proposed techniques. The global convergence analysis extends beyond convexity assumption on
the objective functions. Additionally, we present numerical experiments and comparisons to demonstrate the
implementation, efficiency, and robustness of the proposed techniques.

1. INTRODUCTION

Conjugate gradient (CG) techniques for solving vector optimization problems (VOPs)
have gained substantial attention from researchers since their introduction to vector set-
ting in 2018 by Lucambio Pérez and Prudente, [43]. These techniques have captured in-
terest due to their simplicity, minimal memory usage, and suitability for large-scale prob-
lems.

Before we extensively explore the main topic of discussion, let us begin by considering
an unconstrained single-objective problem of minimizing a function f : Rn −→ R. Several
βk parameters were studied in the literature for this problem, these include the Polak–
Ribiére–Polyak (PRP) [47], Hestenes–Stiefel (HS) [31] and Liu–Storey (LS) [40], which are
defined respectively as follows:

βPRP
k :=

gTk yk−1

∥gk−1∥2
, βHS

k :=
gTk yk−1

dTk−1yk−1
, βLS

k := − gTk yk−1

dTk−1gk−1
,

where yk−1 := (gk−gk−1), gk = ∇f(zk), and ||·|| is the Euclidean norm. Other well-known
CG techniques are the Fletcher-Reeves (FR) [16], Conjugate Descent (CD) [17], and Dai-
Yuan (DY) [11]. For each βk, a search direction dk needs to satisfies a descent property
given by gTk dk ≤ 0, for all k ≥ 1. There are many other choices for the parameter βk, we
briefly listed the most common ones as seen above. For other choices of the βk parameter,
see for example [3, 29, 56, 61], and the references therein.

The CG techniques FR, CD, and DY have one distinguishing characteristic, that is, their
search directions satisfy sufficient descent condition (SDC)

(1.1) gTk dk ≤ −c∥gk∥2, ∀ k ≥ 1,

Received: 05.09.2023. In revised form: 12.02.2024. Accepted: 19.02.2024
2020 Mathematics Subject Classification. 90C29, 90C52, 90C30, 90C26, 49M37 .
Key words and phrases. Conjugate gradient method; Pareto-optimality; sufficient descent condition; vector

optimization.
Corresponding author: Poom Kumam; poom.kum@kmutt.ac.th

515



516 J. Yahaya, P. Kumam and J. Abubakar

with c > 0, when a Wolfe line search is utilized. In contrast, the PRP, HS, and LS do not
necessarily satisfy (1.1), see, for instance, Powell [48].

Wei et al. [55] introduced new variations of CD and FR techniques for solving uncon-
strained large-scale optimization. The proposed techniques encompass several crucial
properties, including the satisfaction of the SDC without any line search and guarantee-
ing the Zoutendijk condition is satisfied when a line search technique is used. Moreover,
the techniques exhibit specific characteristics of the PRP CG technique. The authors es-
tablished the global convergence of the proposed techniques by applying the standard
Wolfe condition (WWC) and the standard Armijo line search. Since then, numerous
other extensions or modifications of these CG techniques have been explored. See, for
instance, [34, 59, 60] and the references therein.

In the following, we consider an unconstrained vector optimization problem (VOP)
defined in the following form

(1.2) MinimizeQ F (z), z ∈ Rn,

where F : Rn −→ Rm in C1 (continuously differentiable functions), Q ⊂ Rm is closed,
convex and pointed cone with nonempty-interior. We emphasize that VOP, as shown
in [36] and [53], can represent several problems across science, engineering, and social
sciences.

The VOPs have applications in diverse fields, including bi-level programming, cancer
treatment planning, engineering, environmental analysis, location science, management
science, and statistics. Notable examples include, [12, 20, 21, 28, 33, 37, 39, 53] and the ref-
erences therein. The partial order defined in Rm, ≼Q, generated by Q (respectively, ≺Q,
generated by int(Q)) is given by

a ≼Q b⇐⇒ b− a ∈ Q,

respectively,
a ≺Q b ⇐⇒ b− a ∈ int(Q).

Now, beginning with an initial point z1 ∈ Rn, the CG technique in the vector setting,
recursively generates a sequence of iterations as

(1.3) zk+1 = zk + tkdk, k ≥ 1,

where the step size tk > 0, is acquired via a line search technique and the search direction
dk is given as

(1.4) dk :=

{
u(zk), k = 1,

u(zk) + βkdk−1, k ≥ 2,

where βk is a scalar parameter.
One of the primary solution strategies for VOPs is scalarization approaches. Here, mul-

tiobjective optimization problems are parameterized by reducing to single-objective op-
timization problems and solved, resulting in a corresponding number of Pareto-optimal
points. In this approach, the decision-maker must select the parameters because they
are not predetermined. For some problems, making this choice can pose significant chal-
lenges or become impossible. Consequently, to overcome these drawbacks, some descent-
based algorithms, including the conjugate gradient algorithm, have been suggested for
solving VOPs.

Over the last two decades, there has been a growing interest in adapting descent-based
algorithms, initially designed for single-objective optimization, extending to VOPs. This
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trend can be traced back to earlier work in 2005, such as [15] and [6]. Subsequently, nu-
merous other studies have followed this trajectory, exploring similar directions [2, 4, 7–9,
18, 22, 24, 26, 27, 44, 50], and the references therein.

The authors in [43] presented the broad concept of Wolfe and Zoutendijk conditions
for VOPs. In particular, they extended and studied certain properties of the following CG
parameters

βFR
k :=

ζ(zk, u(zk))

ζ(zk−1, u(zk−1))
, βCD

k :=
ζ(zk, u(zk))

ζ(zk−1, dk−1)
, βDY

k :=
−ζ(zk, u(zk))

ζ(zk, dk−1)− ζ(zk−1, dk−1)
,

βPRP
k :=

−ζ(zk, u(zk)) + ζ(zk−1, u(zk))

−ζ(zk−1, u(zk−1))
, βHS

k :=
−ζ(zk, u(zk)) + ζ(zk−1, u(zk))

ζ(zk, dk−1)− ζ(zk−1, dk−1)
,

where ζ(·, ·) will be defined in the next section. Their study encompassed numerical im-
plementations of these techniques, which were analyzed and discussed. Among these
techniques, the nonnegative PRP and HS exhibited superior performance compared to
the others, while DY and CD surpassed FR. These are extensions of βk that were origi-
nally proposed for an unconstrained single-objective optimization in [1, 10, 11, 25] to the
vector setting.

Furthermore, Goncalves et al. in [26] presented the following LS CG technique and two
of its variants

βLS
k :=

−ζ(zk, u(zk)) + ζ(zk−1, u(zk))

−ζ(zk−1, dk−1)
.

The search direction of the LS could not satisfy the SDC. However, one of their variants
satisfied this property. They investigated the global convergence of these techniques us-
ing both Wolfe and Armijo line searches. Their numerical experiments suggest that the
technique with the Wolfe line search is competitive with the modified technique where
the Armijo line search is used. Therefore, in general the search directions of the PRP, LS,
and HS CG techniques, as defined above, could not establish sufficient descent property.
Some few other researches in this direction emerges, see for instance [30, 57, 58].

This research is motivated by the works [55, 59]. We introduced three new CG tech-
niques (which we termed YPR, YLS, and YHS) for VOPs that exhibit the SDC without line
search, except for the YHS which uses Wolfe line search for its sufficient descent property.
Additionally, we establish the global convergence of these techniques using strong Wolfe
line search. We show that the sequence generated by our proposed techniques identifies
a point that satisfies the first-order necessary condition for Pareto-optimality. These are
obtained under appropriate assumptions. Importantly, our comprehensive analysis does
not rely on convex assumption on the objective functions. We extensively discuss the re-
sults of the numerical experiments, which aim to demonstrate the effectiveness, efficiency,
and robustness of the proposed techniques. A comprehensive comparison of these results
with nonnegative HS technique, is provided. To the best of our knowledge, the proposed
βk parameters are the first nonnegative PRP and HS variants to satisfy the SDC in the
vector optimization setting.

The paper is structured as follows: Section 2 provides the basics and preliminary re-
sults, such as lemmas and definitions associated with VOPs. Section 3 presents the con-
vergence analysis: the sufficient descent conditions and the global convergence of the
proposed CG techniques. Section 4 presents the numerical results and discusses the com-
parison with other existing technique. Finally, in Section 5, we conclude and provide
closing remarks.
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2. PRELIMINARIES

In this section, we present some definitions, basic notions, and lemmas related to VOPs
that will subsequently be used in this paper. For some notable preliminaries, the reader is
referred to [14, 15, 19, 42, 43].

The concept of optimality is replaced by Pareto-optimal or Pareto-efficient in VOP. Thus,
in this context, we define Pareto-optimal or Pareto-efficient:

Definition 2.1. [23] A point z̄ ∈ Rn is Pareto-optimal or efficient if and only if there does
not exists a point z ∈ Rn such that F (z) ≼Q F (z̄) and F (z) ̸= F (z̄),

and weak Pareto-optimal or weak Pareto-efficient

Definition 2.2. [23] A point z̄ ∈ Rn is weak Pareto-optimal or weak Pareto-efficient if and
only if there does not exists a point z ∈ Rn such that F (z) ≺Q F (z̄).

Remark 2.1. If z̄ ∈ Rn represents a Pareto-optimal point, it also qualifies as a weak Pareto
point. However, the reverse statement is often not true.

The positive polar cone of Q is

Q∗ := {p ∈ Rm | ⟨p, z⟩ ≥ 0, ∀ z ∈ Q}.
Now, we state some properties of Q and Q∗. Note that since Q is closed and convex, then,
Q = Q∗∗,

−Q = {z ∈ Rm | ⟨z, p⟩ ≤ 0, ∀ p ∈ Q∗} and −int(Q) = {z ∈ Rm | ⟨z, p⟩ < 0, ∀ p ∈ Q∗\{0}}.
A cone generated by S ⊆ Rm is denoted by cone(S) and a convex hull of S is denoted by
conv(S). Now, suppose C ⊆ Q∗ and 0 /∈ C is compact, and define Q∗ as:

(2.5) Q∗ = cone(conv(C)).

For instance, in multiobjective optimization setting, Q = Rm
+ , implies Q∗ = Q and C is

taken to be the canonical basis in Rm. If Q is a polyhedral cone, then Q∗ is also a polyhedral
cone. Additionally, C can be considered as the finite set of extremal rays of polyhedral
cone Q∗. Now, for a generic Q (closed, convex and pointed cone with nonempty-interior),
we have

(2.6) C = {p ∈ Q∗ | ∥p∥ = 1},
satisfying (2.5). Throughout this paper we consider C to be defined as (2.6). The first order
derivative and the Jacobian of F at z is represented as JF (z). While the Image(JF (z))
represents the image on Rm by JF (z). A necessary condition for Q−optimality of z̄ ∈ Rn

is given as
−int(Q) ∩ Image(JF (z̄)) = ∅.

If this condition holds, then the point z ∈ Rn is said to be a stationary or Q−critical Pareto.
However, if z ∈ Rn is not Q−critical, then there exists h ∈ Rn such that JF (z)h ∈ −int(Q),
this indicates that h is a Q−descent direction for F at z, that is, there exists ϵ > 0 such that
F (z + rh) ≺Q F (z) for all 0 < r < ϵ, see e.g., [42] for a full discussion on this.

Define θ : Rm → R as
θ(z) := sup{⟨z, p⟩ | p ∈ C}.

By the compactness of C, we have that θ is well-defined. Notice that θ also provides some
features of −Q and −int(Q) as follows: −Q = {z ∈ Rm | θ(z) ≤ 0} and −int(Q) = {z ∈
Rm | θ(z) < 0}, respectively.

Now, define ζ : Rn × Rn → R by

(2.7) ζ(z, d) := θ(JF (z)d) = sup{⟨JF (z)d, p⟩ | p ∈ C}.



Efficient nonlinear CG techniques for VOP 519

Definition 2.3. A d ∈ Rn is Q−descent direction for F at z when ζ(z, d) < 0 and z is
Q−critical point for F when ζ(z, d) ≥ 0 for all d.

Lemma 2.1. [15] Suppose F : Rn → Rm is in C1. Then, the statements below hold:

(a) ζ(z, z
′
+ td) ≤ ζ(z, z

′
) + tζ(z, d), for z, z

′
, d ∈ Rn and t ≥ 0;

(b) the mapping (z, d) 7−→ ζ(z, d) is continuous;

(c) |ζ(z, d)− ζ(z
′
, d)| ≤ ∥JF (z)− JF (z

′
)∥∥d∥, for z, z

′
, d ∈ Rn;

(d) if ∥JF (z)− JF (z
′
)∥ ≤ L∥z − z

′∥, then |ζ(z, d)− ζ(z
′
, d)| ≤ L∥d∥∥z − z

′∥.

Define u : Rn → Rn and v : Rn → R by

(2.8) u(z) := arg min
{
ζ(z, d) +

∥d∥2

2
| d ∈ Rn

}
and

(2.9) v(z) := ζ(z, u(z)) +
∥u(z)∥2

2
,

respectively. Considering that the real-valued ζ(z, ·) is a closed and convex function and
d 7−→ ∥d∥2

2 is strictly convex, then u(z) exists and is unique.
Now, consider a convex quadratic problem:

(2.10)
Minimize t+

1

2
∥d∥2,

subject to [JF (z)d]i ≤ t, i = 1, 2, · · · ,m,

with linear inequality constraints, see for instance, [19].
In vector setting, the search direction d ∈ Rn is said to satisfies the sufficient descent

condition (SDC) if

(2.11) ζ(z, d) ≤ cζ(z, u(z)),

for some c > 0. In addition, we say that the step size, t > 0 can be obtained through an
exact line search if

(2.12) ζ(z + td, d) = 0.

We now give the vector Wolfe conditions that was introduced by Lucambio Pérez and
Prudente [43].

Definition 2.4. [43] Suppose d ∈ Rn is a Q−descent and e ∈ Q, we have

(2.13) 0 < ⟨p, e⟩ ≤ 1,

for all p ∈ C.
Now, t > 0 satisfies the standard Wolfe condition (WWC) if

F (z + td) ≼Q F (z) + ρtζ(z, d)e

(2.14) ζ(z + td, d) ≥ σζ(z, d),

where 0 < ρ < σ < 1. Furthermore, t > 0 satisfies the strong Wolfe condition (SWC) if

F (z + td) ≼Q F (z) + ρtζ(z, d)e

(2.15) |ζ(z + td, d)| ≤ σ|ζ(z, d)|.
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It is interesting to know that the vector e ∈ Q given in (2.13), invariably exists. Specifi-
cally, for multiobjective optimization e ∈ Q is considered as [1, · · · , 1]T . The sets Q and C
are considered as Rm

+ and canonical basis of Rm, respectively.
Let us end this section with the following important Lemmas:

Lemma 2.2. [15]. Let u(z) and v(z) be defined as in (2.8) and (2.9) respectively:
(a) let z be a Q−critical for F , then u(z) = 0 and v(z) = 0,

(b) suppose z is not Q−critical for F, then u(z) ̸= 0, v(z) < 0, ζ(z, u(z)) < −∥u(z)∥2

2 < 0
and u(z) Q−descent direction for F at z,

(c) The mappings u and v are continuous.

3. MAIN RESULTS

In this section, we present the proposed CG techniques YPR, YLS and YHS and inves-
tigate their convergence properties.

Assumption 3.1. Suppose that the cone Q is finitely generated and there exists an open set ∆ for
which L := {z | F (z) ≼Q F (z1)} ⊂ ∆, where z1 ∈ Rn and there exists L > 0 such that JF
satisfies ∥JF (z)− JF (z

′
)∥ ≤ L∥z − z

′∥ for all z, z
′ ∈ ∆.

Assumption 3.2. The level set L := {z | F (z) ≼Q F (z1)} is bounded.

Note that throughout this section, we assume that 0 < ρ < σ < 1, and e ∈ Q as defined
in (2.13).

We propose the following variants of the PRP and LS techniques:

βY PR
k :=

−µ1ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
µ2|ζ(zk, dk−1)| − ζ(zk−1, u(zk−1))

,(3.16)

βY LS
k :=

−µ1ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
µ2|ζ(zk, dk−1)| − ζ(zk−1, dk−1)

,(3.17)

and

βY HS
k :=

−µ1ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
ζ(zk, dk−1)− ζ(zk−1, dk−1) + µ2|ζ(zk, dk−1)|

,(3.18)

where µ1 ∈ (0, 1) and µ2 ∈ (µ1,∞)

Remark 3.2. The proposed techniques (3.16) and (3.18) are considered nonnegative, that
is max{βY PR

k , 0},max{βY LS
k , 0}, and max{βY HS

k , 0}. Additionally, the choice of µ1 and µ2

are such that µ1

µ2
∈ (0, 1).

Let us consider the following general algorithm for VOPs.

Algorithm 1: Conjugate Gradient Algorithm (CG Algorithm)
Step 0: Given z1 ∈ Rn and Initialization k ←− 1.
Step 1: Compute u(zk) and v(zk) using (2.8) and (2.9), respectively.
Step 2: If v(zk) = 0, then stop. Otherwise, compute

(3.19) dk =

{
u(zk), k = 1,

u(zk) + βkdk−1, k ≥ 2,

where βk is a nonnegative parameter.
Step 3: Compute tk > 0 by using the line search (2.15).
Step 4: Set zk+1 = zk + tkdk, for k ←− k + 1 and go back to Step 1.



Efficient nonlinear CG techniques for VOP 521

Let us now proposed the well-known property (∗) as follows:
Property (∗) [43] Consider Algorithm 1 and suppose that

(3.20) 0 < δ̄ ≤ ∥u(zk)∥,

for all k ≥ 1. Under this assumption, we get a property (∗) if there are some constants
q > 1 and λ > 0 for all k such that |βk| ≤ q, and ∥sk−1∥ ≤ λ implies that |βk| ≤ 1

2q , where
sk−1 = zk − zk−1. The well-known property (∗) was originally introduced by Gilbert and
Nocedal [25] to analyze the global convergence of PRP and HS in scalar optimization, its
vector extension was subsequently provided by Lucambio Pérez and Prudente [43].

The theorem below suggests that using standard assumptions, a CG technique in vector
setting which satisfies property (∗), converges.

Theorem 3.3. [43] Consider Algorithm 1 and let Assumptions 3.1 and 3.2 hold, for all k, where:
(a) βk is nonnegative;
(b) dk is a Q−descent direction of F at zk;
(c) tk satisfies condition (2.15);
(d) property (∗) holds. Then,

lim inf
k→∞

∥u(zk)∥ = 0.

Note that, by Assumption 3.2 we have that {zk} ⊂ L, there exists M̄ > 0 such that

(3.21) ∥zk∥ ≤ M̄,

for all k. Thus, by the continuity arguments, there are constants δ > 0 and γ > 0 such that

(3.22) ∥u(zk)∥ ≤ δ and ∥JF (zk)∥ ≤ γ

hold. In addition, for all p̄ ∈ C, we get

(3.23) 0 < −ζ(zk, u(zk)) ≤ ⟨JF (zk)u(zk), p̄⟩ ≤ ∥JF (zk)∥∥u(zk)∥ ≤ δγ,

with ∥p̄∥ = 1.
The following result shows that dk defined as (3.19) satisfies the SDC (2.11) without any

line search.

Lemma 3.3. Consider Algorithm 1 with βk defined as (3.16). Then, dk defined by (3.19), satisfies

the SDC (2.11) with c =

(
1− µ1

µ2

)
, for all k ≥ 1, where µ1 and µ2 are defined in (3.18).

Proof. The proof utilizes an induction technique. We initiate the process by considering
the case when k = 1, we have d1 = u(z1). Since ζ(z1, u(z1)) < 0, from Lemma 2.2 (b), we
now have

ζ(z1, d1) ≤
(
1− µ1

µ2

)
ζ(z1, u(z1)).

Now, assume that up to some k ≥ 2, we have

ζ(zk−1, dk−1) ≤
(
1− µ1

µ2

)
ζ(zk−1, u(zk−1)) < 0.(3.24)

Observe from Remark 3.2, we have βY PR
k ≥ 0 and so it is well-defined.

Additionally, using Lemma 2.1 (a), (3.19) and the fact that βY PR
k ≥ 0, we have

(3.25) ζ(zk, dk) ≤ ζ(zk, u(zk)) + βY PR
k ζ(zk, dk−1).

If ζ(zk, dk−1) ≤ 0, the result follows trivially with c =

(
1− µ1

µ2

)
.
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Otherwise, ζ(zk, dk−1) > 0, and so by using (3.16) in (3.25), we have

(3.26) ζ(zk, dk) ≤ ζ(zk, u(zk)) +

(
−µ1ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
µ2ζ(zk, dk−1)− ζ(zk−1, u(zk−1))

)
ζ(zk, dk−1).

Observe from Lemma 2.2(b) that −ζ(zk−1, u(zk−1)) > 0. This implies that

(3.27) µ2ζ(zk, dk−1)− ζ(zk−1, u(zk−1)) > 0,

for all k.
Thus,

(3.28) ζ(zk, dk) ≤ ζ(zk, u(zk)) +
−µ1ζ(zk, u(zk))ζ(zk, dk−1)

µ2ζ(zk, dk−1)
.

Inequality (3.28) arises from omitting the last term in (3.26). Additionally, the positive
term −ζ(zk−1, u(zk−1)) > 0 in the denominator of the second term in (3.26) is dropped.
This further yields

(3.29) ζ(zk, dk) ≤
(
1− µ1

µ2

)
ζ(zk, u(zk)).

The proof is complete. □

Theorem 3.4. Consider Algorithm 1 with βk defined as (3.16) such that Assumptions (3.1) and
(3.2) hold. If tk satisfies condition (2.15). Then,

(3.30) lim inf
k→∞

∥u(zk)∥ = 0.

Proof. To that end, using Theorem 3.3, it suffices to show that Algorithm 1 with βk in (3.16)
has property(∗). Now, assume that (3.20) holds. Then, by (3.22) and (3.20), we have

(3.31) 0 < δ̄ ≤ ∥u(zk)∥ ≤ δ, ∀ k ≥ 1.

Additionally, by (3.23), Lemma 2.2 (b), and (3.31), we have

(3.32)
δ̄2

2
≤ −ζ(zk, u(zk)) ≤ δγ.

We also see from (3.22) and (3.23) that

(3.33) |ζ(zk−1, u(zk))| = |⟨JF (zk−1)u(zk), p̄⟩| ≤ ||JF (zk−1)||||u(zk)|| ≤ δγ,

then by Assumption 3.1, Lemma 2.1(d), and (3.31), we get

(3.34) | − ζ(zk, u(zk)) + ζ(zk−1, u(zk))| ≤ L∥zk − zk−1∥∥u(zk)∥ ≤ Lλδ,

where λ ≥ ∥sk−1∥ = ∥zk − zk−1∥.
Now, for (3.16), we define q := 4δγ

δ̄2
and λ := δ̄2

4Lδq . Observe that for βk = 0, nothing to
show, therefore, our concern is only for the case when βk = βY PR

k > 0. Since µ1 ∈ (0, 1)
and
−ζ(zk, u(zk)) > 0, from Lemma 2.2 (b), we have

βk = βY PR
k =

−µ1ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
µ2|ζ(zk, dk−1)| − ζ(zk−1, u(zk−1))

≤ −ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
µ2|ζ(zk, dk−1)| − ζ(zk−1, u(zk−1))

.

Again, since µ2|ζ(zk, dk−1)| > 0 for all µ2 > 0, this implies that

(3.35) βk ≤
−ζ(zk, u(zk))− |ζ(zk−1, u(zk))|

−ζ(zk−1, u(zk−1))
.

By (3.32) and (3.33), we get
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βk ≤
−ζ(zk, u(zk)) + |ζ(zk−1, u(zk))|

−ζ(zk−1, u(zk−1))
≤ 4δγ

δ̄2
= q.

Observe that

(3.36) −ζ(zk, u(zk))− |ζ(zk−1, u(zk))| ≤ −ζ(zk, u(zk)) + ζ(zk−1, u(zk)).

Therefore, from (3.35), we have

βk ≤
−ζ(zk, u(zk))− |ζ(zk−1, u(zk))|

−ζ(zk−1, u(zk−1))
≤ −ζ(zk, u(zk)) + ζ(zk−1, u(zk))

−ζ(zk−1, u(zk−1))
.

Again, by (3.32) and (3.34), we get
(3.37)

βk ≤
−ζ(zk, u(zk)) + ζ(zk−1, u(zk))

−ζ(zk−1, u(zk−1))
≤ | − ζ(zk, u(zk)) + ζ(zk−1, u(zk))|

−ζ(zk−1, u(zk−1))
≤ 2Lλδ

δ̄2
=

1

2q
,

where λ ≥ ∥sk−1∥ = ∥zk − zk−1∥. Hence, we conclude that Algorithm 1 with βk in (3.16)
has Property (∗). □

The following result shows that dk defined as (3.19) satisfies the SDC (2.11) without any
line search.

Lemma 3.4. Consider Algorithm 1 with βk in (3.17). Then dk defined by (3.19),satisfies the SDC

(2.11) with c =

(
1− µ1

µ2

)
, for all k ≥ 1, where µ1 and µ2 are defined in (3.18).

Proof. The proof utilizes an induction technique. We initiate the process by considering
the case when k = 1, we have d1 = u(z1). Since ζ(z1, u(z1)) < 0, from Lemma 2.2 (b), we
now have

ζ(z1, d1) ≤
(
1− µ1

µ2

)
ζ(z1, u(z1)).

Now, assume up to some k ≥ 2 that, we have

ζ(zk−1, dk−1) ≤
(
1− µ1

µ2

)
ζ(zk−1, u(zk−1)) < 0.(3.38)

Additionally, using Lemma 2.1 (a), (3.19) and the fact that βk = βY LS
k ≥ 0, we have

(3.39) ζ(zk, dk) ≤ ζ(zk, u(zk)) + βY LS
k ζ(zk, dk−1).

If ζ(zk, dk−1) ≤ 0, the result follows trivially with c =

(
1− µ1

µ2

)
.

Otherwise, ζ(zk, dk−1) > 0, and by using (3.17) in (3.39), we have

(3.40) ζ(zk, dk) ≤ ζ(zk, u(zk)) +

(
−µ1ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
−ζ(zk−1, dk−1) + µ2|ζ(zk, dk−1)|

)
ζ(zk, dk−1).

Observe that from (3.38), we have −ζ(zk−1, dk−1) + µ2|ζ(zk, dk−1)| > 0, for all µ2. There-
fore, we drop the last term in inequality (3.40) and get

(3.41) ζ(zk, dk) ≤ ζ(zk, u(zk)) +

(
−µ1ζ(zk, u(zk))

−ζ(zk−1, dk−1) + µ2|ζ(zk, dk−1)|

)
ζ(zk, dk−1).

Again, since the term −ζ(zk−1, dk−1) > 0, we get

(3.42) ζ(zk, dk) ≤
(
1− µ1

µ2

)
ζ(zk, u(zk)).

This complete the proof. □
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Theorem 3.5. Consider Algorithm 1 with βk defined as (3.17) such that Assumptions (3.1) and
(3.2) hold. If tk satisfies condition (2.15). Then,

(3.43) lim inf
k→∞

∥u(zk)∥ = 0.

Proof. The proof follows the same pattern with that of Theorem 3.4. We utilize Algorithm
1 with βk in (3.17), we want to show that this method has property(∗). Now, assume that
(3.20) holds and define q := 4δγ

δ̄2c
and λ := δ̄2c

4Lδq . Observe that for βk = 0, nothing to show,
therefore, our concern is only for the case when βk = βY LS

k > 0. Since µ1 ∈ (0, 1) and
−ζ(zk, u(zk)) > 0, from Lemma 2.2 (b), we have

βk = βY LS
k =

−µ1ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
−ζ(zk−1, dk−1) + |µ2ζ(zk, dk−1)|

≤ −ζ(zk, u(zk))− |ζ(zk−1, u(zk))|
−ζ(zk−1, dk−1) + |µ2ζ(zk, dk−1)|

.

Again, since µ2ζ(zk, dk−1) > 0 for all µ2 > 0, this implies that

(3.44) βk ≤
−ζ(zk, u(zk))− |ζ(zk−1, u(zk))|

−ζ(zk−1, dk−1)
.

This is further given as

βk ≤
−ζ(zk, u(zk)) + |ζ(zk−1, u(zk))|

−ζ(zk−1, dk−1)
.

By Lemma 3.4, we have

(3.45) −ζ(zk−1, dk−1) ≥ −cζ(zk−1, u(zk−1)) > 0.

Applying (3.45), (3.32), and (3.33), we get

βk ≤
−ζ(zk, u(zk)) + |ζ(zk−1, u(zk))|

−cζ(zk−1, u(zk−1))
≤ 4δγ

δ̄2c
= q.

Thus, from (3.44), we get

βk ≤
−ζ(zk, u(zk))− |ζ(zk−1, u(zk))|

−ζ(zk−1, dk−1)
≤ −ζ(zk, u(zk)) + ζ(zk−1, u(zk))

−cζ(zk−1, u(zk−1))
.

We further have

(3.46) βk ≤
−ζ(zk, u(zk)) + ζ(zk−1, u(zk))

−cζ(zk−1, u(zk−1))
≤ | − ζ(zk, u(zk)) + ζ(zk−1, u(zk))|

−cζ(zk−1, u(zk−1))

Again, we see from (3.32) and (3.34) that

βk ≤
| − ζ(zk, u(zk)) + ζ(zk−1, u(zk))|

−cζ(zk−1, u(zk−1))
≤ 2Lλδ

δ̄2c
=

1

2q
.

Hence, we conclude that Algorithm 1 with βk in (3.17) has Property (∗). □

The following result shows that dk defined as (3.19) satisfies the SDC (2.11) using
WWC.

Lemma 3.5. Consider Algorithm 1 with βk in (3.18) and suppose (2.14) holds. Then dk defined

by (3.19),satisfies the SDC (2.11) with c =

(
1− µ1

µ2

)
, for all k ≥ 1, where µ1 and µ2 are defined

in (3.17).

Proof. Using the WWC (2.14), we have ζ(zk, dk−1)− ζ(zk−1, dk−1) > 0 for all k ≥ 1. Then,
the proof follows a similar pattern to that of Lemma 3.4. □
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Theorem 3.6. Consider Algorithm 1 with βk defined as (3.18) such that Assumptions (3.1) and
(3.2) hold. If tk satisfies condition (2.15). Then,

(3.47) lim inf
k→∞

∥u(zk)∥ = 0.

Proof. The proof follows a similar pattern to that of Theorem 3.5. □

4. NUMERICAL EXPERIMENTS AND DISCUSSIONS

In this section, we report the performance of the proposed techniques, namely: YPR,
YLS, and YHS. The purpose is to assess their effectiveness and robustness in solving
benchmark test problems derived from a wide range of multiobjective optimization re-
search articles in the literature. All the Algorithms were implemented using double-
precision Fortran 90, and the experiments were conducted on a PC with the following
specifications: Intel Core i5-1135G7 CPU running at 2.4GHz, and 16 GB of RAM.

For multiobjective optimization, we take e to be [1, · · · , 1]T ∈ Rm, Q and C are consid-
ered as Rm

+ , and canonical basis of Rm, respectively.
Below, we present a summary of the CG techniques under consideration. This encom-

passes both our proposed techniques and those employed for comparison purposes:
• YPR+: a nonnegative variant of the PRP CG technique defined by (3.16);
• YLS+: a nonnegative variant of the LS CG technique defined by (3.17);
• YHS+: a nonnegative variant of the HS CG technique defined by (3.18);
• HS+: a nonnegative Hestenes-Stiefel (HS) CG technique proposed in [43].

An essential part of these techniques is the computation of the steepest descent direc-
tion, denoted as u(z). To achieve this, we compute problem (2.10) by using Algencan,
a versatile augmented Lagrangian code designed for solving nonlinear problems [5]. In
addition, the selection of the step size was performed using a line search strategy that
satisfies condition (2.15). Specifically, we employed the line search used for the HS+ tech-
nique in [43] for all the proposed techniques. Below are the initial parameters utilized in
the implementation of the proposed techniques:

• ρ = 10−4, σ = 0.1 c = 0.4.

Moreover, it was conveyed in Lemma 2.2 that z ∈ Rn is a Q−critical point of F if and
only if v(z) = 0. Consequently, the experimentation was conducted by running all the
implemented techniques up to the point of convergence, which is assumed to be v(z) ≥
−5 × eps

1
2 , in which the v(z) is defined by (2.9) and the machine precision, eps ≈ 2.22 ×

10−16 or whenever, the maximum number of iterations, #maxIt = 5000 is exceeded.
Additionally, we consider µ1 = 0.01 and µ2 = 0.1 in our numerical computation.

Table 1 presents essential information regarding the selected test problems. In the first
column, we have the names of the problems; for instance, “MGH” corresponds to the
problem introduced by Moré, Garbow, and Hillstrom in [46], and “SLC2” aligns with the
second problem proposed by Schütze, Lara, and Coello in [51]. All other problems follow
the same pattern with their corresponding sources. The second and third columns, labeled
as “n” and “m, ” respectively, indicate the numbers of variables under consideration and
the objective functions of the problem, respectively. To generate the starting points, a box
constraint was utilized, defined as{z ∈ Rn | l̄ ≤ z ≤ ū}, with the lower and upper bounds
denoted in the fourth and fifth columns, respectively. While the last column indicates the
corresponding references of the problems.

Tables 2 and 3 present the results of our new CG techniques in comparison with HS+
and are organized as follow: “%”, “It”, “Fe”, and “Ge”. In this case, “%” denotes the
percentage of runs that has reached critical point and for the successful runs, while “It”,
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“Fe”, and “Ge” indicate the medians number of iterations, functions and gradient eval-
uations, respectively. It is important to emphasize that each evaluation of an objective
function (respectively, objective gradient) in the corresponding computation is accounted
for in the Fe column (respectively, Ge column).

The following table presents the collection of test problems considered in this paper.

TABLE 1. List of Test Problems

Problems n m l̄T ūT Source

JOS1 1000 2 (−10000, · · · ,−10000) (10000, · · · , 10000) [35]
SLC2 10 2 (−100, · · · ,−100) (100, · · · , 100) [51]

1000 2 (−100, · · · ,−100) (100, · · · , 100) [51]
2000 2 (−100, · · · ,−100) (100, · · · , 100) [51]

SLCDT1 2 2 (−5,−5) (5, 5) [52]
AP1 2 3 (−100,−100) (100, 100) [2]
AP2 2 2 (−100,−100) (100, 100) [2]
AP4 2 2 (−100,−100) (100, 100) [2]
Lov1 2 2 (−100,−100) (100, 100) [41]
Lov4 2 2 (−100,−100) (100, 100) [41]
FF1 2 2 (−1,−1) (1, 1) [35]

2000 2 (−1, · · · ,−1) (1, · · · , 1) [35]
10000 2 (−1, · · · ,−1) (1, · · · , 1) [35]

FDS 100 3 (−2, · · · ,−2) (2, · · · , 2) [18]
MMR1 2 2 (0, 0) (1, 1) [45]
MMR5 2 2 (−5,−5) (5, 5) [45]

1000 2 (−5, · · · ,−5) (5, · · · , 5) [45]
MOP1 2 2 (−100000,−100000) (100000, 100000) [35]
MOP5 2 3 (−1,−1) (1, 1) [35]
DGO1 2 2 (−10,−10) (13, 13) [35]
Far1 2 2 (−1,−1) (1, 1) [35]
MLF2 2 2 (−100,−100) (100, 100) [35]
SSFYY2 2 2 (−100,−100) (100, 100) [35]
SK1 2 2 (−100,−100) (100, 100) [35]
SK2 4 2 (−10,−10,−10,−10) (10, 10, 10, 10) [35]
Hil1 2 2 (0, 0) (1, 1) [32]
DD1 5 2 (−20,−20,−20,−20,−20) (20, 20, 20, 20, 20) [35]
KW2 2 2 (−3,−3) (3, 3) [38]
Toi4 4 2 (−100,−100,−100,−100) (100, 100, 100, 100) [54]
Toi8 2 2 (−1,−1,−1,−1) (1,1,1,1) [54]
MGH26 4 4 (−1,−1,−1,−1) (1,1,1,1) [46]
MGH33 10 10 (−1, · · · ,−1) (1, · · · , 1) [46]
PNR 2 2 (−1,−1) (1, 1) [49]
SLCDT2 10 3 (−100, · · · ,−100) (100, · · · , 100) [52]

In the following table, we present the performance of the proposed CG techniques in
comparison with HS+ CG technique on a collection of some selected convex and noncon-
vex multiobjective problems.
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TABLE 2. Performance of the proposed techniques in comparison with HS+

HS+ YPR+

Problem % It Fe Ge % It Fe Ge

JOS1 100 1 2 4 100 1 2 4
SLC2(n=10) 100 14.5 124.5 114 100 21.5 141 121
SLC2 (n=1000) 100 31 208.5 186 100 29 196 172.5
SLC2 (n=2000) 100 31 221 203 100 32.5 220 189.5
SLCDT1 100 2 22 24 100 2 22.5 22

AP1 100 11 104 85 100 11 104 85
AP2 100 1 2 4 100 1 2 4
AP4 100 18 140 131 100 21 163 147.5
Lov1 100 3 6 8 100 3 6 8
Lov4 100 1 6 10 100 2 6 8
FF1 (n=2) 100 12.5 75 64.5 100 12 76.5 66
FF1(n=2,000) 13 25 256 246 100 12 168 162.5
FF1(n=10,000) 15 18 218 209 100 13 138.5 132
FDS 100 45 326.5 294.5 100 45 326.5 294.5
MMR1 100 7 54 43 100 7 54 41
MMR5 (n=2) 100 84 525.5 458.5 100 46.5 230 214.5
MMR5 (n=1000) 100 103.5 584 545 100 53 411.5 392.5
MOP1 100 1 2 4 100 1 2 4
MOP5 100 2 18 19 100 3 24 25
DGO1 100 1 10 11 100 1 10 11
Far1 100 43.5 284 255 100 34.5 199 174
MLF2 100 41 229.5 206 100 34 192 166
SSFYY2 100 1 9 10.5 100 1 9 10.5
SK1 100 2 22 23.5 100 2 21 20
SK2 100 37.5 116.5 119 100 37.5 117.5 119
Hil1 100 11 80 69 100 10 66 56.5
DD1 100 74.5 230 232 100 74.5 225.5 227.5
KW2 100 13.5 108.5 90.5 100 11 81 70
Toi4 100 3 27 29 100 4 22 21
Toi8 100 1 6 7 100 1 6 7
MGH26 100 2 39 41 100 5 64.5 60
MGH33 100 1 22 31 100 1 22 31
PNR 100 14 70 58 100 11 52 44.5
SLCDT2 100 21 187 168 100 21 191 168



528 J. Yahaya, P. Kumam and J. Abubakar

TABLE 3. Continuation of Table 2

YLS+ YHS+

Problem % It Fe Ge % It Fe Ge

JOS1 100 1 2 4 100 1 2 4
SLC2(n=10) 100 23 141 123 100 22 138.5 121
SLC2 (n=1000) 100 28.5 192.5 167.5 100 28 189 163
SLC2 (n=2000) 100 33 218.5 187.5 100 32 226 193.5
SLCDT1 100 2 22.5 22 100 2 22.5 22
AP1 100 11 104 85 100 11 104 85
AP2 100 1 2 4 100 1 2 4
AP4 100 21 163 147.5 100 21 163 147.5
Lov1 100 3 6 8 100 3 6 8
Lov4 100 2 6 8 100 2 6 8
FF1 (n=2) 100 12 76.5 66 100 12 76.5 66
FF1(n=2,000) 100 12 168 162 100 12.5 168 162
FF1(n=10,000) 100 13 138.5 132 100 13 138.5 132
FDS 100 45 326.5 294.5 100 45 326.5 294.5
MMR1 100 7 54 41 100 7 54 41
MMR5 (n=2) 100 46 230 214 100 46 230 214
MMR5 (n=1000) 100 53 411.5 392.5 100 53 411.5 392.5
MOP1 100 1 2 4 100 1 2 4
MOP5 100 3 24 25 100 3 24 25
DGO1 100 1 10 11 100 1 10 11
Far1 100 34.5 199 174 100 34.5 199 174
MLF2 100 34.5 192 166.5 100 34 192 166.5
SSFYY2 100 1.5 9.5 10.5 100 1.5 9.5 10.5
SK1 100 2 21 20 100 2 21 20
SK2 100 38 117.5 119 100 38 117 119
Hil1 100 10 66 56.5 100 10 66 56.5
DD1 100 74.5 225.5 227.5 100 74.5 225.5 227.5
KW2 100 11 81.5 70 100 11 81 70.5
Toi4 100 4 22 21 100 4 22 21
Toi8 100 1 6 7 100 1 6 7
MGH26 100 5 64.5 60 100 5 64.5 60
MGH33 100 1 22 31 100 1 22 31
PNR 100 11 52 44.5 100 11 52 44.5
SLCDT2 100 21 193 172 100 15 174 162

Table 4 provides a summary of the information presented in Tables 2 and 3. In Table 4,
the term ”successful” indicates the number of test problems in which the CG techniques
achieved a 100% success rate. On the other hand, ”Not successful” refers to the num-
ber of test problems in which the CG techniques did not reach a 100% success rate and
”Failure” represents the number of test problems that the CG techniques were unable to
solve. Finally, ”Total” indicates the total number of test problems considered for these
CG techniques. Notice that each problem here was solved 200 times using a uniform
random distribution within a defined box. This process involved exploring the solution
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space by starting from various initial points. In this case, one significant advantage of
our proposed techniques is that they successfully solved all the 34 selected test problems
considered here, while HS+ was able to solved 32 successfully out of the 34.

TABLE 4. An overview of the results in Tables 2 and 3.

Run HS+ YPR+ YLS+ YHS+

Successful 32 34 34 34
Not Successful 2 0 0 0

Failure 0 0 0 0

Total 34 34 34 34

In the context of multiobjective optimization, the primary focus is on approximating
the Pareto frontier of the problem being considered. To obtain this approximate Pareto
frontier, we adopted an approach where each of the implemented techniques was run
200 times for each problem. The techniques were initialized from uniformly distributed
random points within the problem’s bounds, which are specified in Table 1. The compar-
ison metrics used include the number of iterations (It), number of function evaluations
(Fe), and number of gradient evaluations (Ge). To ensure a fair and appropriate algorith-
mic comparison, we employed the well-known Dolan and Moré performance profile [13].
This tool allows us to summarize the experimental data presented in Tables 2 and 3.

Now, based on the reported Figures 1-3, the newly developed techniques, YHS+ and
YPR+, demonstrate the best performance in terms of efficiency and robustness among all
compared techniques, as indicated by the number of iterations. Following closely is the
YLS+ technique. On the number of function and gradient evaluations, YHS+, YPR+, and
YLS+ techniques evaluate fewer functions and gradients than HS+. These results make
our proposed techniques promising, considering that we used the same line search for
both HS+ and our proposed techniques, specifically the line search used for HS+ tech-
niques in [43]. These impressive results suggest that the established sufficient descent
condition plays a significant role in achieving such performance.
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5. CONCLUDING REMARKS

In this paper, we present three new modified CG techniques for VOPs. The assump-
tions made in this work are built naturally upon those established for the scalar mini-
mization case. Specifically, we proposed three CG techniques, denoted as YPR+, YLS+,
and YHS+. We established the SDC of YPR+ and YLS+ techniques without line search.
While YHS+ technique with line search. Moreover, without assuming convexity on the
objective functions but under certain standard assumptions, we have proven the global
convergence of the YPR+, YLS+ and YHS+ CG techniques. We show that the sequence
generated by our proposed techniques identifies a point that satisfies the first-order nec-
essary condition for Pareto-optimality. To our knowledge, the proposed techniques are
the first PRP and HS variants shown to have SDC in the vector optimization literature.
Additionally, we have conducted numerical experiments to demonstrate the practical ro-
bustness and efficiency of the proposed techniques. These experiments also include a
comparison with the HS+ CG technique. The results indicate that our proposed CG tech-
niques are competitive and promising.
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Stefano, D. D. Real-world applications of multiobjective optimization. Multiobjective optimization: interactive
and evolutionary approaches, pages 285–327, 2008.

[54] Toint, P.L. Test problems for partially separable optimization and results for the routine pspmin. the uni-
versity of namur, department of mathematics. Technical report, Belgium, Tech. Rep., 1983.

[55] Wei, Z. Li, G. and Qi, L. New nonlinear conjugate gradient formulas for large-scale unconstrained opti-
mization problems. Appl. Math. Comput. 179 (2006), no. 2, 407–430.

[56] Wei, Z. Yao, S. and Liu, L. The convergence properties of some new conjugate gradient methods. Appl.
Math. Comput. 183 (2006), no. 2, 1341–1350.

[57] Yahaya, J. Arzuka, i. and Isyaku, M. Descent modified conjugate gradient methods for vector optimization
problems. Bangmod Int. J. Math. & Comp. Sci. 9 (2023), 72–91.

[58] Yahaya, J. and Kumam, P. Efficient hybrid conjugate gradient techniques for vector optimization. Results in
Control and Optimization, 14 (2024), 100348.

[59] Yuan G., Zhao, Y. and Wei, Z. A descent nonlinear conjugate gradient method for large-scale unconstrained
optimization. Appl. Math. Comput. 187 (2007), no. 2, 636–643.

[60] Yuan G., Lu, X. and Wei, Z. A conjugate gradient method with descent direction for unconstrained opti-
mization. J. Comput. Appl. Math. 233 (2009), no. 2, 519–530.

[61] Zhang, L. An improved wei–yao–liu nonlinear conjugate gradient method for optimization computation.
Appl. Math. Comput. 215 (2009), no. 6, 2269–2274.



Efficient nonlinear CG techniques for VOP 533

1CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACS-COE)
AND KMUTTFIXED POINT RESEARCH LABORATORY

ROOM SCL 802 FIXED POINT LABORATORY SCIENCE LABORATORY BUILDING

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE

KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT)
126 PRACHA-UTHIT ROAD, BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND.
Email address: poom.kum@kmutt.ac.th

2NCAO RESEARCH CENTER, FIXED POINT THEORY AND APPLICATIONS RESEARCH GROUP

CENTER OF EXCELLENCE IN THEORETICAL AND COMPUTATIONAL SCIENCE (TACSCOE)
FACULTY OF SCIENCE, KING MONGKUT’S UNIVERSITY OF TECHNOLOGY THONBURI (KMUTT)
126 PRACHA-UTHIT ROAD, BANG MOD, THUNG KHRU, BANGKOK 10140, THAILAND.

3DEPARTMENT OF MATHEMATICS

FACULTY OF PHYSICAL SCIENCES

AHMADU BELLO UNIVERSITY ZARIA

KADUNA STATE, NIGERIA.
Email address: yahayaj@abu.edu.ng

4DEPARTMENT OF MATHEMATICS

FACULTY OF PHYSICAL AND COMPUTING SCIENCES

USMANU DANFODIO UNIVERSITY, SOKOTO 840004, NIGERIA

Email address: abubakar.jamilu@udusok.edu.ng


