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Levitin-Polyak well-posedness for generalized
(η, g, φ)-mixed vector variational-type inequality

PANU YIMMUANG and PATCHARAPA SRICHOK

ABSTRACT. This study delves into the concept of Levitin-Polyak well-posedness in the context of a general-
ized vector variational-type inequality problem with parameters (η, g, φ). Our primary objective is to establish
a comprehensive set of conditions that can be employed to rigorously assess the attributes of Levitin-Polyak
well-posedness, both in its standard form and as a generalized concept. To enhance the clarity and applicability
of these conditions, we provide an instructive example that elucidates the underlying assumptions and demon-
strates the practical implications of our research. Through this work, we contribute to the understanding and
practical implementation of well-posedness in variational inequality problems.

1. INTRODUCTION

In the rich and intricate landscape of variational inequality theory, as well as its ex-
tensions to diverse mathematical and optimization problems, this research embarks on a
journey to make a substantial and innovative contribution to the realm of well-posedness.
Variational inequalities have long been the subject of rigorous examination by a multi-
tude of researchers, as evidenced by the extensive body of work found in the literature
[1, 5, 8, 13, 15, 25]. The allure of these inequalities lies in their profound relationship
with mathematical programming problems, even under conditions that can be deemed
relatively mild. This relationship, in turn, has prompted the natural progression of the
concept of Tykhonov well-posedness, evolving it to encompass a wider spectrum of vari-
ational inequalities [6, 7, 8, 9, 10, 12], equilibrium problems, fixed point problems, opti-
mization problems, mixed quasivariational-like inequalities with constraints, and numer-
ous other problem classes [14, 16, 19, 24, 26].

Hadamard [11] was a pioneer in the field of optimization, introducing the concept of
well-posedness based on the existence and uniqueness of an optimal solution, coupled
with the essential notion of the continuous dependence of this optimal solution and the
corresponding optimal value on the problem’s data. His groundbreaking work laid the
foundation for a deeper understanding of optimization problems.

Building upon Hadamard’s insights, Tykhonov [23] further expanded the notion of
well-posedness in the context of minimization problems. His approach was inspired by
numerical methods and emphasized two fundamental aspects. The first was the insis-
tence on the existence and uniqueness of an optimal solution, which served as a corner-
stone for well-posedness. The second aspect focused on the convergence of any sequence
that seeks to minimize the objective function, ensuring that it ultimately converges to the
unique solution. Tykhonov’s contributions added rigor and practicality to the concept of
well-posedness.
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However, it was Levitin and Polyak [18] who introduced a new and more refined per-
spective on well-posedness. Their innovation strengthened Tykhonov’s concept by re-
quiring not only the convergence of minimizing sequences to the optimal solution but
also that this convergence holds true for a more extensive set of minimizing sequences.
This elevated criterion offered a more robust and versatile framework for understanding
well-posedness in optimization.

Additionally, Konsulova and Revalski [17] delved into the realm of Levitin-Polyak (LP)
well-posedness, specifically focusing on convex scalar optimization problems with func-
tional constraints. Their work extended the applicability of LP well-posedness, shedding
light on its relevance in more complex optimization scenarios.

In summary, the concept of well-posedness in optimization has evolved over time,
with Hadamard’s initial insights, Tykhonov’s numerical emphasis, and Levitin-Polyak’s
refined definition, each contributing to a deeper and more comprehensive understand-
ing of this crucial notion. Konsulova and Revalski’s research further extended the reach
of LP well-posedness, making it applicable to a broader range of optimization problems,
particularly those involving convex scalar optimization with functional constraints.

In the annals of this field, a significant milestone was reached in the year 2000 when Lig-
nola and Morgan [21] introduced the innovative concept of parametric well-posedness.
This concept is tailored to optimization problems burdened with variational inequality
constraints and relies on the elegant idea of approximating sequences. Subsequently, Lig-
nola [20] embarked on a comprehensive exploration of well-posedness, L-well-posedness,
and metric characterizations of well-posedness, a vital contribution that unlocked new in-
sights into the subtleties of quasi-variational-inequality problems.

The journey of extending these conceptual boundaries did not halt there. Ceng and
Yao [3] further extended these pioneering concepts to unveil the conditions under which
generalized mixed variational inequality problems, a class of problems with broad appli-
cations, could be considered well-posed. Their work was instrumental in expanding the
frontiers of well-posedness theory.

Within the broader panorama, Lin and Chuang [22] made notable strides by establish-
ing well-posedness not only for variational inclusion problems but also for optimization
problems that are graced with variational inclusion and scalar equilibrium constraints.
Their work introduced a generalized sense of well-posedness, elucidating key facets of
these interconnected problems.

In the year 2010, Fang and his collaborators [10] introduced yet another dimension to
the concept of well-posedness. Their work was notable for extending the notion of well-
posedness by perturbations, addressing a mixed variational inequality problem within
the sophisticated setting of a Banach space. These developments marked significant progress
in the quest to understand the depth and breadth of well-posedness within variational in-
equality theory.

Most recently, Ceng and his research team [2] have presented invaluable contributions
by elucidating the conditions necessary for well-posedness in hemivariational inequality
problems. Their work encompasses the involvement of Clarkes generalized directional
derivative and various types of monotonicity assumptions, providing a sophisticated lens
through which well-posedness can be understood in the context of variational inequali-
ties.

Very Recently, Chang et al. [4] focused on the well-posedness for a generalized (η, g, φ)-
mixed vector variational-type inequality and optimization problems with a constraint.
They established a metric characterization of well-posedness in terms of an approximate
solution set. Also they proved that well-posedness of optimization problem was closely
related to that of generalized (η, g, φ)-mixed vector variational-type inequality problems
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In light of this dynamic and evolving landscape, our research endeavors to contribute
a novel perspective by investigating the Levitin-Polyak well-posedness of a particular
problem. This problem has previously undergone rigorous examination and scrutiny in
the context of well-posedness, as explored in another publication. By exploring Levitin-
Polyak well-posedness, our work builds upon the foundations laid by these esteemed
researchers, aiming to advance the understanding of well-posedness within variational
inequality problems and bring new insights to this ongoing discourse.

2. PRELIMINARIES

Consider X and Y as two real Banach spaces. Assume that D is a non-empty closed
convex subset of X , and P is a closed convex cone with non-empty interior in Y while
also being proper. Throughout this paper, we will employ the following inequalities. For
all x, y ∈ Y :

(i) x ≤P y ⇔ y − x ∈ P ;
(ii) x ̸≤P y ⇔ y − x ̸∈ P ;

(iii) x ≤P 0 y ⇔ y − x ∈ P 0;

where P 0 denotes the interior of P .
If ≤P is a partial order, then (Y,≤P ) is called an ordered Banach space ordered by P .

Let T : X → 2L(X,Y ) be a set-valued mapping where L(X,Y ) denotes the space of all
continuous linear mappings from X into Y . Assume that Q : L(X,Y )×D → L(X,Y ), φ :
D ×D → Y, η : X ×X → X are bi-mappings and g : D → D is single-valued mapping.

We consider the following generalized (η, g, φ)-mixed vector variational-type inequal-
ity problem for finding x ∈ D and u ∈ T (x) such that

(2.1)
〈
Q(u, x), η

(
y, g(x)

)〉
+ φ

(
g(x), y

)
̸≤P 0 0,∀y ∈ D.

Denote the solution set of the problem (2.1) by

Ω = {x ∈ D : ∃u ∈ T (x) such that
〈
Q(u, x), η

(
y, g(x)

)〉
+ φ

(
g(x), y

)
̸≤P 0 0,∀y ∈ D}.

Definition 2.1. A set-valued mapping T : D → 2L(X,Y ) is said to be monotone with
respect to the first variable of Q, if〈

Q(u, ·)−Q(v, ·), x− y
〉
≥p 0, ∀x, y ∈ D,u ∈ T (x), v ∈ T (y).

Definition 2.2. Let g : D → D be a single-valued mapping. A set-valued mapping T :

D → 2L(X,Y ) is said to be relaxed η-αg-P -monotone with respect to the first variable of Q
and g, if〈

Q(u, ·)−Q(v, ·), η
(
g(x), y

)〉
− αg(x− y) ≥p 0, ∀x, y ∈ D,u ∈ T (x), v ∈ T (y),

where αg : X → Y is a mapping such that αg(tz) = tpαg(z),∀t > 0, z ∈ X, and p > 1 is a
constant.

Definition 2.3. A mapping γ : X × X → X is said to be affine with respect to the first

variable if, for any xi ∈ D and λi ≥ 0(1 ≤ i ≤ n) with
n∑

i=0

λi = 1 and for any y ∈ D,

γ

(
n∑

i=0

λixi, y

)
=

n∑
i=1

λiγ(xi, y).

Lemma 2.1. Let (Y, P ) be an ordered Banach space with closed convex pointed cone P and P 0 ̸=
∅. Then, for all x, y, z ∈ Y , we have

(i) z ̸≤P 0 x, x ≥P y ⇒ z ̸≤P 0 y;
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(ii) z ̸≥P 0 x, x ≤P y ⇒ z ̸≥P 0 y.

Lemma 2.2. Let (X, ∥ · ∥) be a normed linear space and H be a Hausdorff metric on the collection
CB(X) of all nonempty, closed and bounded subsets of X induced by metric

d(u, v) = ∥u− v∥,
which is defined by

H(A,B) = max

{
sup
u∈A

inf
v∈B

∥u− v∥, sup
v∈B

inf
u∈A

∥u− v∥
}
,∀A,B ∈ CB(X).

If A,B are compact sets in X , then for each u ∈ A there exists v ∈ B such that

∥u− v∥ ≤ H(A,B).

Definition 2.4. A set-valued mapping T : D → 2L(X,Y ) is said to be H-hemicontinuous, if

H
(
T
(
x+ τ(y − x)

)
, T (x)

)
→ 0 as τ → 0+,∀x, y ∈ D, τ ∈ (0, 1),

where H is a Hausdorff metric defined on CB(L(X,Y )).

In the context of real Banach spaces, the following lemma explores a scenario where D
is a closed convex subset of a Banach space X , and Y is another Banach space equipped
with a nonempty closed convex pointed cone P having its apex at the origin, with P 0 ̸= ∅.

Lemma 2.3. [4] Consider a closed convex subset D of a real Banach space X , where Y is another
real Banach space equipped with a nonempty closed convex pointed cone P having its apex at the
origin, and P 0 ̸= ∅. Let Q : L(X,Y ) → L(X,Y ) be a continuous mapping, and T : D →
2L(X,Y ) be a nonempty compact set-valued mapping. Provided the subsequent conditions hold:

(i) φ : D ×D → Y is a P-convex in the second variable with φ(x, x) = 0,∀x ∈ D;
(ii) η : X ×X → X is an affine mapping in the first variable with η(x, x) = 0,∀x ∈ D;

(iii) T : D → 2l(X,Y ) is H-hemicontinuous and relaxed η-α-P -monotone with respect to Q;
then the following two problems are equivalent:

(a) there exist x0 ∈ D and u0 ∈ T (x0) such that
⟨Q(u0), η(y, x0)

〉
+ φ(x0, y) ̸≤P 0 0, ∀y ∈ D.

(b) there exists x0 ∈ D such that〈
Q(v), η(y, x0)

〉
+ φ(x0, y)− α(x0 − y) ̸≤P 0 0, ∀y ∈ D, v ∈ T (y).

3. MAIN RESULTS

Definition 3.5. A sequence xn is said to be a Levitin-Polyak approximating sequence for
problem (2.1) if, there exist un ∈ T (xn) and a sequence of positive real numbers εn → 0
such that d(xn, D) ≤ εn and〈

Q(un, xn), η
(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
+ εne ̸≤P 0 0,∀y ∈ D, e ∈ intP.

Definition 3.6. The generalized (η, g, φ)-mixed vector variational-type inequality and op-
timization problems is said to be Levitin-Polyak well-posed if

(i) there exists a unique solution x0 of problem (2.1);
(ii) every Levitin-Polyak approximating sequence of problem (2.1) converges to x0.

Definition 3.7. The generalized (η, g, φ)-mixed vector variational-type inequality and op-
timization problems is said to be generalized Levitin-Polyak well-posed if

(i) the solution set Ω of problem (2.1) is nonempty;
(ii) every Levitin-Polyak approximating sequence has a subsequence that converges

to some point of Ω.
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We denote the Levitin-Polyak approximate solution set of problem 2.1 by

Ωε =

{
x : ∃u ∈ T (x) such that d(x,D) ≤ ε and〈
Q(u, x), η

(
y, g(x)

)〉
+ φ

(
g(x), y

)
+ εe ̸≤P 0 0,∀y ∈ D, ε ≥ 0.

}
Within the framework of continuous mappings and continuous functions, this theorem
addresses a key property related to problem (2.1) when specific conditions laid out in
Lemma 2.3 are satisfied. The theorem establishes a fundamental characterization, demon-
strating that problem (2.1) exhibits Levitin-Polyak well-posedness if and only if two criti-
cal conditions hold: firstly, the set Ωε is nonempty for all ε > 0, and secondly, the diameter
of Ωε approaches zero as ε tends to zero.

Theorem 3.1. Let g : D → D and Q : L(X,Y )×D → L(X,Y ) be two continuous mappings.
Let φ(·, y), η(y, ·) and αg be continuous functions for all y ∈ D. If the conditions in Lemma 2.3
are satisfied, then problem (2.1) is Levitin-Polyak well-posed if and only if

Ωε ̸= ∅, ∀ε > 0

and
diam Ωε → 0 as ε → 0.

Proof. Let problem (2.1) is Levitin-Polyak well-posed, then it has a unique solution x0 ∈ Ω.
Since Ω ⊆ Ωε, for all ε > 0, This implies that

Ωε ̸= ∅, ∀ε > 0.

On the contrary, if
diamΩε ̸→ 0 as ε → 0,

then there exist r > 0,m(a positive integer), and a sequence {εn > 0} with εn → 0 and xn, x
′

n ∈
Ωεn such that

(3.2) ∥xn − x
′

n∥ > r, ∀n ≥ m.

Since xn, x
′

n ∈ Ωεn , there exist un ∈ T (xn) and u
′

n ∈ T (x
′

n) such that

d(xn, D) ≤ εn and
〈
Q(un, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
+ εne ̸≤P 0 0, ∀y ∈ D,

d(x
′

n, D) ≤ εn and
〈
Q(u

′

n, x
′

n), η
(
y, g(x

′

n)
)〉

+ φ
(
g(x

′

n), y
)
+ εne ̸≤P 0 0, ∀y ∈ D.

So {xn} and {x′

n} are Levitin-Polyak approximating sequences of problem (2.1).
Since the problem is Levitin-Polyak well-posed, the Levitin-Polyak approximating se-
quences {xn} and {x′

n} of problem (2.1) converge to x0. Therefore we have

∥xn − x
′

n∥ = ∥xn − x0 + x0 − x
′

n∥ ≤ ∥xn − x0∥+ ∥x′

n − x0∥ ≤ ε,

which contradicts to (3.2), for some ε = r.
Conversely, let Ωε ̸= ∅,∀ε > 0 and diam Ωε → 0 as ε → 0. Assume that {xn} is a

Levitin-Polyak approximating sequence of problem (2.1). Then there exist un ∈ T (xn)
and a sequence of positive real numbers εn → 0 such that d(xn, D) ≤ εn and

(3.3)
〈
Q(un, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
+ εne ̸≤P 0 0, ∀y ∈ D,

which implies that xn ∈ Ωεn . Since diam Ωεn → 0 as εn → 0, so {xn} is a Cauchy se-
quence in X . Since X is complete, we have {xn} converges to some x0 ∈ X . Since
d(xn, D) ≤ εn, we can choose x

′

n ∈ D so that

∥xn − x
′

n∥ ≤ εn

which implies that x
′

n → x0. Since D is closed, so x0 ∈ D.
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Again since T is relaxed η-αg-P -monotone with respect to the first variable of Q and g
on D, it follows from Definition 2.2, for any y ∈ D and u ∈ T (y), we have

(3.4)
〈
Q(un, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
≤P

〈
Q(u, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
− αg(y − xn).

From the continuity of g, φ, η and αg , we have〈
Q(u, x0), η

(
y, g(x0)

)〉
+ φ

(
g(x0), y

)
− αg(y − x0)

= lim
n→∞

{
〈
Q(u, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
− αg(y − xn)}.

This together with (3.4) shows that

(3.5)

〈
Q(u, x0), η

(
y, g(x0)

)〉
+ φ

(
g(x0), y

)
− αg(y − x0)

≥P lim
n→∞

{
〈
Q(un, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
}.

Taking the limit in (3.3), we have

(3.6) lim
n→∞

{
〈
Q(un, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
} ̸≤P 0 0.

Combining (3.5) and (3.6) and using Lemma 2.1(ii), we get〈
Q(u, x0), η

(
y, g(x0)

)〉
+ φ

(
g(x0), y

)
− αg(y − x0) ̸≤P 0 0.

By Lemma 2.3, there exist x0 ∈ D and u0 ∈ T (x0) such that〈
Q(u0, x0), η

(
y, g(x0)

)〉
+ φ

(
g(x0), y

)
̸≤P 0 0, ∀y ∈ D,

which implies that x0 ∈ Ω. It remains to prove that x0 is a unique solution of the problem
(2.1). Contrary, let x1 and x2 are two distinct solutions of problem (2.1).
By

diamΩε = sup
x1,x2∈Ωε

∥x1 − x2∥ ≥ ∥x1 − x2∥

and diam Ωε → 0 as ε → 0, we can get that

0 < ∥x1 − x2∥ ≤ diamΩε → 0 as ε → 0.

So x0 is a unique solution of problem (2.1). This is the proof is completed. □

In the context of continuous mappings and continuous functions, the following theo-
rem addresses the well-posedness of problem (2.1) when the specified conditions outlined
in Lemma 2.3 are met. This theorem establishes a fundamental equivalence, demonstrat-
ing that problem (2.1) exhibits Levitin-Polyak well-posedness if and only if it possesses a
unique solution.

Theorem 3.2. Let g : D → D and Q : L(X,Y )×D → L(X,Y ) be two continuous mappings.
Let φ(·, y), η(y, ·) and αg be continuous functions for all y ∈ D. If the conditions in Lemma 2.3 are
satisfied. Then problem (2.1) is Levitin-Polyak well-posed if and only if it has a unique solution.

Proof. By the definition, we know that Levitin-Polyak well-posedness for problem (2.1)
implies that it has a unique solution.

Conversely, suppose that the problem (2.1) has a unique solution x0. Let {λn} be a
sequence in X which converges to λ̄. Let {xn} be an Levitin-Polyak approximating se-
quence with respect to {λn}. Then there exist un ∈ T (xn) and a sequence of positive real
number εn → 0 suct that

(3.7) d(xn, D) ≤ εn

and

(3.8)
〈
Q(un, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
+ εne ̸≤P 0 0, ∀y ∈ D.
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Using (3.7) and the closedness of D in X , for each positive integer n, we can choose x
′

n ∈ D
so that

(3.9) ∥xn − x
′

n∥ ≤ εn

Since X is a compact set, the sequence {x′

n} has a subsequence {x′

nl
} which converges to a

point x̄ ∈ X . Using (3.9), we conclude that the corresponding subsequence {xnl
} of {xn}

converges to x̄.
Again D is closed set, it follows that x̄ ∈ D. Proceeding along the lines of converse part in
the proof of Theorem 3.1, we can show that x̄ ∈ Ω.
Consequently, x̄ coincides with x0 (x̄ = x0). Again, by the uniqueness of the solution, it is
obvious that every possible subsequence converges to the unique solution x0 and hence
the whole sequence {xn} converges to x0.
So the Levitin-Polyak well-posedness of problem (2.1) is satisfied. □

To shed further light on the concepts explored in our research, we present a practi-
cal example that underscores the significance of well-posedness within the framework of
variational inequalities. In this example, we define and analyze the key components of
the problem, its constraints, and the associated functions. This specific example serves as
a tangible demonstration of the application of our findings and showcases how the notion
of Levitin-Polyak well-posedness can be illustrated in a real-world context. Through this
example, we aim to highlight the vital role of well-posedness in guaranteeing unique and
meaningful solutions to mathematical and optimization problems.

Example 3.1. Let X = Y = R, D = [0, 1] and P = [0,∞). Let us define the mappings
T : D → 2L(X,Y ), φ : D × D → Y, η : X × X → X, and Q : L(X,Y ) × D → L(X,Y ) as
follows:

T (x) = {u : R → R|u is a continuous linear mapping such that u(x) = x};
g(x) = x;
φ
(
g(x), y

)
= y − x;

η
(
y, g(x)

)
= 1

2 (x− y);
Q(v, y) = v;
αg = −x2.

In this case, the generalized (η, g, φ)- mixed vector variational-type inequality problem
(2.1) is to find x ∈ D and u ∈ T (x) such that

(3.10)
〈
u,

1

2
(x− y)

〉
+ y − x ≰P 0 0, ∀y ∈ D.

It easy to see that Ω = {0}. Again since T is relaxed η-αg-P -monotone with respect to
the first variable of Q and g, and all conditions in Theorem 3.2 are satisfied. Therefore the
problem (3.10) is Levitin-Polyak well-posed.

Theorem 3.3. Suppose that all the conditions in Lemma 2.3 are satisfied. Further, assume that D
is a compact set and g, φ(·, y), η(y, ·), αg are continuous functions for all y ∈ D. Then problem
(2.1) is generalized Levitin-Polyak well-posed if and only if the solution set Ω is nonempty.

Proof. Suppose that problem (2.1) is generalized Levitin-Polyak well-posed it follows that
Ω ̸= ∅. Conversely, let {λn} be a sequence in X converging to λ̄ and {xn} be an Levitin-
Polyak approximating sequence with respect to {λn}. Then there exist un ∈ T (xn) and a
sequence of positive real number εn → 0 suct that

(3.11) d(xn, D) ≤ εn
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and

(3.12)
〈
Q(un, xn), η

(
y, g(xn)

)〉
+ φ

(
g(xn), y

)
+ εne ̸≤P 0 0, ∀y ∈ D.

Using (3.11) and the closedness of D in X , for each positive integer n, we can choose
x

′

n ∈ D so that

(3.13) ∥xn − x
′

n∥ ≤ εn

Since D is a compact set, there exists a subsequence {x′

nl
} of {x′

n} converging to x̄ ∈ D.
From (3.13), we conclude that the corresponding subsequence {xnl

} of {xn} converges to
x̄ ∈ D.

Proceeding along the lines of converse part in the proof of Theorem 3.1, we can show
that x̄ ∈ Ω. The proof is completed. □

As we delve deeper into the study of well-posedness in the context of variational in-
equalities and their extensions, it is often insightful to examine specific instances and
cases. In this regard, we present a practical example that illustrates the concepts discussed
in our research. This example provides a concrete application of the generalized (η, g, φ)-
mixed vector variational-type inequality problem (2.1). We define the problem, its con-
straints, and relevant functions to demonstrate the application of our findings. Through
this example, we aim to showcase the effectiveness and relevance of our well-posedness
criteria in real-world scenarios.

Example 3.2. Let X = Y = R2, D = [0, 1] × [0, 1] and P = [0,∞) × [0,∞). Let us define
the mappings T : D → 2L(X,Y ), φ : D ×D → Y, η : X ×X → X, and Q : L(X,Y )×D →
L(X,Y ) as follows:

T (x) = {w, z : R2 → R|w,z are a continuous linear mapping such that
w(x1, x2) = x1, z(x1, x2) = x2};

g(x) = x;
φ
(
g(x), y

)
= x− y;

η
(
y, g(x)

)
= y − x;

Q(u, x) = u;
αg = 0.

In this case, the generalized (η, g, φ)- mixed vector variational-type inequality problem
(2.1) is to find x ∈ D and u ∈ T (x) such that

(3.14)
〈
u, y − x

〉
+ x− y ≰P 0 0,∀y ∈ D.

Clearly, Ω = [0, 1]× [0, 1]. It can be easily verified that T is relaxed η-αg-P -monotone with
respect to the first variable of Q and g, and all conditions in Theorem 3.3 are satisfied.
Hence, problem (3.14) is generalized Levitin-Polyak well-posed.

4. CONCLUSIONS

In conclusion, our study has introduced and thoroughly examined the concept of Levitin-
Polyak well-posedness within the context of a generalized vector variational-type in-
equality problem with parameters (η, g, φ). We have successfully established a set of
sufficient conditions that allow for the assessment of both Levitin-Polyak well-posedness
and generalized Levitin-Polyak well-posedness in this problem domain. Through an il-
lustrative example, we have clarified the practical implications of these conditions and
their role in understanding the underlying assumptions. This research contributes to the
field by providing a framework for analyzing and characterizing well-posedness in vec-
tor variational-type inequality problems, with potential applications in optimization and
decision-making processes.
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