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ABSTRACT. Starting from a characterization of polynomial dichotomy by means of admissibility, recently
proved in [Dragičević, D.; Sasu, A. L.; Sasu, B. Admissibility and polynomial dichotomy of discrete nonau-
tonomous systems. Carpath. J. Math. 38 (2022), 737-762.], the aim of this paper is to explore the roughness of
polynomial dichotomy in the presence of perturbations and to obtain a new robustness criterion. We show that
the polynomial dichotomy is robust when subjected to linear additive perturbations which are bounded by a
well-chosen sequence. We emphasize that the new bounds imposed to the perturbation family improve and ex-
tend the previous approaches. Furthermore, we mention that the main result applies to discrete nonautonomous
systems in Banach spaces with the only requirement that their propagators exhibit a polynomial growth.

1. INTRODUCTION

The admissibility methods represent some of the most interesting and effective tools in
exploring the asymptotic behavior of dynamical systems (see [1,2,6,9,10,13–17,19–24,27–
33,35,37–41,44,45,47–61,64,66–68] and the references therein). Although the foundation of
these techniques had been established more than ninety years ago in the celebrated works
of Perron [47] and Li [37], the notions of admissibility were introduced three decades later
in the remarkable works of Massera and Schäffer (see [38, 39]) and Coffman and Schäffer
(see [13]). The next notable steps in the admissibility theory were made in the monographs
of Daleckiı̆ and Kreı̆n [15], Coppel [14] and Henry [33]. Those were succeeded by land-
mark works, in their majority focused on stabilities and dichotomies, which significantly
contributed to the development of these methods for both nonautonomous and varia-
tional systems, among which we mention Palmer [44, 45], Chow and Leiva [10], Aulbach
and Minh [1], Minh, Räbiger and Schnaubelt [41], Chicone and Latushkin [9], Pliss and
Sell [48]. For detailed descriptions of the history of the admissibility theory and recent re-
sults in this topic, from various perspectives, for stability, expansiveness, dichotomy and
trichotomy we refer to Dragičević, Sasu and Sasu [20, 21, 23], Dragičević, Sasu, Sasu and
Singh [24], Dragičević, Zhang and Zhou [27, 28], Sasu and Sasu [56–60], Zhou, Lu and
Zhang [67], Zhou and Zhang [66, 68].

An important line of studies in the asymptotic theory of dynamical systems is devoted
to the analysis of the persistence of various behaviors in the presence of perturbations.
Thus, diverse methods were built around the roughness topics, being afterwards ex-
tended to other classes of qualitative properties of dynamical systems (see [1, 3–6, 9–11,
14–20, 23, 25, 26, 29, 33, 34, 36, 39, 42–46, 48, 49, 53, 55, 59, 61–63, 65, 66, 68] and the references
therein). In this context, it is of interest to explore both whether an asymptotic property
(such as dichotomy or stability) is preserved when the initial system is perturbed (see e.g.
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Battelli and Palmer [3], Chow and Leiva [10, 11], Coppel [14], Palmer [42, 43], Pliss and
Sell [48], Zhou, Lu and Zhang [65]) and to determine what kind of perturbations should
be considered i.e. additive, multiplicative, multi-structured (see e.g. Battelli, Franca
and Palmer [4], Dragičević [16, 17], Dragičević, Sasu and Sasu [20, 23], Dragičević, Sasu,
Sasu and Şirianţu [25], Hinrichsen and Pritchard [34], Sasu and Sasu [49, 59], Sasu [53],
Sasu [55], Wirth and Hinrichsen [62], Zhou and Zhang [66, 68]). Moreover, in certain
cases, the method enables one to establish the largest “size” that can be allowed for a per-
turbation such that the perturbed system exhibits the same kind of asymptotic behavior
as the initial one, which leads to the notions of stability radius or dichotomy radius or at
least gives specific bounds for those radii (see Braverman and Karabash [6], Chicone and
Latushkin [9], Sasu and Sasu [49, 59], Sasu [53], Wirth and Hinrichsen [62], Wirth [63]).

In two recent works we have established new characterizations for the notion of poly-
nomial dichotomy for discrete nonautonomous systems (see Dragičević, Sasu and Sasu [22,
23]) and we have presented a description regarding the evolution of the studies on poly-
nomial behaviors of dynamical systems and their impact in the literature over the last
decades (see also [2,7,8,16,17,31,32,61] and the references therein). More precisely, in [23]
we have proved that the polynomial dichotomy can be characterized in terms of some
double specific admissibilities, providing a different method compared to the previous ad-
missibility approaches to polynomial behaviours (see e.g. Dragičević [16,17], Hai [31,32],
Silva [61]). Furthermore, we have shown that the uniform polynomial dichotomy of dis-
crete nonautonomous systems is robust when subjected to suitable perturbations. We re-
call that other studies on the robustness of polynomial dichotomies have been previously
done in [16, 17, 61]. We also emphasize that the method developed in [23] was distinct,
being built on the admissibility criteria obtained in the same work. On the other hand,
as pointed out in [59], when exploring the roughness of a dichotomy property, one of the
aims is not only to deduce that it is robust under perturbations but to identify and opti-
mize, at the same time, the suitable upper bounds for the perturbation. Thus, obtaining
optimal bounds for the perturbation structures is an important goal also in the case of the
polynomial dichotomies.

The aim of this paper is to give a new robustness criterion for the polynomial di-
chotomy of discrete nonautonomous systems. We continue and improve our method
introduced in [23], providing a special bound for the perturbation that is related to the
norm of the some input-output operators. The paper is organized as follows: first we
recall and discuss several admissibility properties established in [23]. Next, we present a
sufficient condition for the existence of a (uniform) polynomial growth for the propagator
of the perturbed system. This is a natural step in the studies devoted to the robustness of
a dichotomic behavior of uniform nature (see e.g. [53, 59]). After that, we deduce several
properties of certain input-output operators connected to the initial system. Next, based
on admissibility techniques, we prove a new sufficient condition for the robustness of the
polynomial dichotomy of the initial system under additive perturbations. Furthermore,
we explain how our result improves and generalizes the previous approaches and crite-
ria. By a relevant example, we also illustrate that the new robustness theorem extends the
applicability area. We emphasize that the main result applies to general discrete nonau-
tonomous systems with the only (minimal) requirement that their propagators exhibit a
polynomial growth.

2. BASIC NOTIONS AND PRELIMINARIES

The concept of polynomial dichotomy whose robustness is studied in this paper is the
one recently explored in Dragičević, Sasu and Sasu [22, 23]. A characterization of this



Robustness of Polynomial Dichotomy of Discrete Systems 645

notion in terms of a double admissibility has been obtained in [23], as we recall in the
following.

Let N = {1, 2, . . . , n, . . .} and Λ = {(n, j) ∈ N× N : n ≥ j}.

Let (X, ∥ · ∥) be a Banach space. The norm on the space B(X) of all bounded linear
operators on X will be also denoted by ∥ · ∥.

For r ∈ [1,∞), consider ℓr(N, X) := {s : N → X :
∑
j∈N

∥s(j)∥r < ∞} with the norm

∥s∥r =
(∑
j∈N

∥s(j)∥r
) 1

r .

Let ℓ∞(N, X) := {s : N → X : supj∈N ∥s(j)∥ < ∞} with the norm

∥s∥∞ = sup
j∈N

∥s(j)∥.

For r ∈ [1,∞], let ℓr0(N, X) be the space of all s ∈ ℓr(N, X) with s(1) = 0.

Let {A(n)}n∈N be an arbitrary family of bounded linear operators on X . Consider the
discrete system

(A) x(n+ 1) = A(n)x(n), n ∈ N

and its propagator ΦA = {ΦA(n, j)}(n,j)∈Λ, i.e.

ΦA(n, j) =

{
A(n− 1) · · ·A(j), n > j

IX , n = j

where IX denotes the identity operator on X .

Definition 2.1. We say that (A) has a polynomial dichotomy if there are a sequence of pro-
jections {P (j)}j∈N on X and two constants N ≥ 1, ν > 0 such that:

(d1) ΦA(n, j)P (j) = P (n)ΦA(n, j), for all (n, j) ∈ Λ;
(d2) sup

j∈N
∥P (j)∥ < ∞;

(d3) the restriction ΦA(n, j)|KerP (j) : KerP (j) → KerP (n) is invertible, for all (n, j) ∈
Λ;

(d4) ∥ΦA(n, j)x∥ ≤ N

(
n

j

)−ν

∥x∥, for all x ∈ RangeP (j) and (n, j) ∈ Λ;

(d5) ∥ΦA(n, j)x∥ ≥ 1

N

(
n

j

)ν

∥x∥, for all x ∈ KerP (j) and (n, j) ∈ Λ.

Remark 2.1. For detailed connections between the polynomial dichotomy and the no-
tions of ordinary dichotomy and exponential dichotomy, as well as for some illustrative
examples, we refer to Dragičević, Sasu and Sasu [22, 23].

Let h ∈ N, h ≥ 3 be fixed. We define

(2.1) B(n) : X → X, B(n) = ΦA(h
n, hn−1)

and we consider the discrete system

(B) x(n+ 1) = B(n)x(n), n ∈ N.

Then the associated propagator ΦB = {ΦB(n, j)}(n,j)∈Λ has the property that

(2.2) ΦB(n, j) = ΦA(h
n−1, hj−1), ∀(n, j) ∈ Λ.
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We associate to the systems (A) and (B) the input-output systems

(SA) y(n+ 1) = A(n)y(n) + s(n+ 1), n ∈ N
and

(SB) z(n+ 1) = B(n)z(n) + s(n+ 1), n ∈ N
with s ∈ ℓ1(N, X) as input sequence and y, z ∈ ℓ∞(N, X) as output sequences.

The following two criteria obtained in [23] will play a key role in our method.

Proposition 2.1. If (A) has a polynomial dichotomy with the projections {P (j)}j∈N, then the
following properties hold:

(i) for each s ∈ ℓ10(N, X) there exists a unique ys ∈ ℓ∞(N, X) with ys(1) ∈ KerP (1) such
that (ys, s) satisfies (SA);

(ii) for each s ∈ ℓ∞0 (N, X) there exists a unique zs ∈ ℓ∞(N, X) with zs(1) ∈ KerP (1) such
that (zs, s) satisfies (SB).

Proof. This follows from the necessity part in the proof of Theorem 4.2 from [23]. □

Theorem 2.1. (A) has a polynomial dichotomy if and only if there is a closed subspace Y ⊂ X
such that the following properties hold:

(i) for each s ∈ ℓ10(N, X) there exists a unique ys ∈ ℓ∞(N, X) with ys(1) ∈ Y such that
(ys, s) satisfies (SA);

(ii) there is r ∈ (1,∞] such that for each s ∈ ℓr0(N, X) there exists a unique zs ∈ ℓ∞(N, X)
with zs(1) ∈ Y and (zs, s) satisfies (SB).

Proof. We refer to Theorem 4.2 in [23]. □

3. A ROBUSTNESS THEOREM FOR UNIFORM POLYNOMIAL DICHOTOMY

In this section we present a new robustness result which shows that the polynomial
dichotomy is preserved provided that the initial nonautonomous system is subjected to
suitable perturbations. The approach follows up to a point our method from [23], but it
is built on new estimates and, thus, it considerably extends and improves the previous
robustness results for polynomial dichotomy.

Let now {D(n)}n∈N be an arbitrary family of bounded linear operators on X . Consider
the perturbed system

(A+D) x(n+ 1) = (A(n) +D(n))x(n), n ∈ N
and then we note that the associated propagator ΦA+D satisfies:

(3.1) ΦA+D(n, j) = ΦA(n, j) +

n−1∑
k=j

ΦA(n, k + 1)D(k)ΦA+D(k, j)

for all (n, j) ∈ Λ, n ≥ j + 1.

For the next result we need the discrete version of the classical Gronwall’s Lemma (see
also [12, 23, 64]):

Lemma 3.1. Let j ∈ N and M > 0. If (an)n≥j and (bn)n≥j are two nonnegative sequences
satisfying aj ≤ M and

an ≤ M +

n−1∑
k=j

akbk, ∀n ≥ j + 1,
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then

an ≤ M e

n−1∑
k=j

bk
, ∀n ≥ j + 1.

Proposition 3.1. Assume that ΦA has a polynomial growth, i.e. there are M ≥ 1, ω > 0 such
that

(3.2) ∥ΦA(n, j)∥ ≤ M

(
n

j

)ω

, ∀(n, j) ∈ Λ.

If there is c > 0 such that

(3.3) ∥D(n)∥ ≤ c ln
n+ 1

n
, ∀n ∈ N,

then

∥ΦA+D(n, j)∥ ≤ M

(
n

j

)ω̃

, ∀(n, j) ∈ Λ

where ω̃ = ω + cM .

Proof. Let j ∈ N. For n ≥ j, we set

(3.4) an :=

(
j

n

)ω

∥ΦA+D(n, j)∥ and bn := cM ln
n+ 1

n
.

It is obvious that aj = 1 ≤ M .

Using (3.1) and the hypotheses (3.2) and (3.3) we observe that

∥ΦA+D(n, j)∥ ≤ M

(
n

j

)ω

+

n−1∑
k=j

M

(
n

k + 1

)ω

c ln
k + 1

k
∥ΦA+D(k, j)∥,

for all n ≥ j + 1. It follows that

(3.5)
(
j

n

)ω

∥ΦA+D(n, j)∥ ≤ M +

n−1∑
k=j

(
j

k

)ω

∥ΦA+D(k, j)∥ · cM ln
k + 1

k
,

for all n ≥ j + 1.

Using (3.5) and by applying Lemma 3.1 for (an)n≥j and (bn)n≥j given by (3.4), we
obtain that

(3.6) an ≤ Me

n−1∑
k=j

cM ln k+1
k

= MecM ln n
j = M

(
n

j

)cM

, ∀n ≥ j + 1.

From (3.4) and (3.6) it yields

∥ΦA+D(n, j)∥ ≤ M

(
n

j

)ω̃

, ∀n ≥ j

which completes the proof. □

In all that follows we work under the hypothesis that ΦA has a polynomial growth. Let
M ≥ 1 and ω > 0 be such that

(3.7) ∥ΦA(n, j)∥ ≤ M

(
n

j

)ω

, ∀(n, j) ∈ Λ.

Remark 3.1. From (3.7) and (2.1) it follows in particular that:
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(i) ∥A(n)∥ = ∥ΦA(n+ 1, n)∥ ≤ M

(
n+ 1

n

)ω

≤ M2ω , for all n ∈ N;

(ii) ∥B(n)∥ = ∥ΦA(h
n, hn−1)∥ ≤ Mhω , for all n ∈ N.

In what follows we assume that (A) has a polynomial dichotomy with the projections
{P (j)}j∈N.

The main question is under what kind of perturbations the system (A+D) has a poly-
nomial dichotomy as well. A first answer was given in [23] (see Theorem 5.1 therein). In
what follows we present a new (and more general) estimate for the suitable perturbations.

We take

(3.8) Y = KerP (1)

and let
ℓ∞Y (N, X) := {δ ∈ ℓ∞(N, X) : δ(1) ∈ Y }.

We note that ℓ∞Y (N, X) is a closed subspace of ℓ∞(N, X).

Remark 3.2. From Proposition 2.1 we have that the following properties hold:
(i) for each s ∈ ℓ10(N, X) there exists a unique ys ∈ ℓ∞Y (N, X) such that (ys, s) satisfies

(SA);
(ii) for each s ∈ ℓ∞0 (N, X) there is a unique zs ∈ ℓ∞Y (N, X) such that (zs, s) satisfies

(SB).

For every δ ∈ ℓ∞Y (N, X), let

qδ : N → X, qδ(n) =

{
δ(n)−A(n− 1)δ(n− 1), n ≥ 2

0, n = 1
.

From Remark 3.1 (i) it follows that qδ ∈ ℓ∞0 (N, X).

Let
D(Q) := {δ ∈ ℓ∞Y (N, X) : qδ ∈ ℓ10(N, X)}

and
Q : D(Q) → ℓ10(N, X), Q(δ) = qδ.

Then Q is a closed operator and taking

∥ · ∥Q : D(Q) → R+, ∥δ∥Q = ∥δ∥∞ + ∥qδ∥1
we have that (D(Q), ∥ · ∥Q) is a Banach space. Furthermore, from Remark 3.2 (i) we have
that Q is invertible.

Lemma 3.2. We have that

(3.9)
1

∥Q−1∥
≤ 1.

Proof. We observe that

∥Q(δ)∥1 = ∥qδ∥1 ≤ ∥δ∥Q, ∀δ ∈ D(Q).

This implies that ∥Q∥ ≤ 1. Hence, it yields that
1

∥Q−1∥
≤ ∥Q∥ ≤ 1

and this completes the proof. □
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From Remark 3.1 (ii) it follows that we can define the operator

V : ℓ∞Y (N, X) → ℓ∞0 (N, X), (V (γ))(n) =

{
γ(n)−B(n− 1)γ(n− 1), n ≥ 2

0, n = 1

and this is a bounded linear operator. In addition, from Remark 3.2 (ii) we have that V is
invertible.

Lemma 3.3. We have that

(3.10)
1

∥V −1∥
≤ 1 +Mhω.

Proof. By Remark 3.1 (ii) we deduce that

∥(V (γ))(n)∥ ≤ ∥γ(n)∥+ ∥B(n− 1)∥ ∥γ(n− 1)∥ ≤ (1 +Mhω)∥γ∥∞
for all n ∈ N, n ≥ 2, and all γ ∈ ℓ∞Y (N, X). This implies that

∥V ∥ ≤ 1 +Mhω.

Hence it yields that
1

∥V −1∥
≤ ∥V ∥ ≤ 1 +Mhω

and thus the proof is complete. □

We set
(3.11) α :=

1

M2hω+M (lnh) ∥V −1∥
.

Lemma 3.4. We have that α ∈ (0, 1).

Proof. Since h ≥ 3, we observe that

hM lnh ≥ h lnh > e

and then it follows from (3.10) and (3.11) that

α ≤ 1 +Mhω

M2hω+M lnh
<

1 +Mhω

eM2hω
< 1.

□
The central result of this paper is:

Theorem 3.1. Assume that D ∈ ℓ1(N,B(X)) and has the property that

(3.12) ∥D∥1 <
1

∥Q−1∥
.

If c ∈ (0, α) and

(3.13) ∥D(n)∥ ≤ c ln
n+ 1

n
, ∀n ∈ N

then (A+D) has a polynomial dichotomy.

Proof. We apply Theorem 2.1 for (A + D) with Y given by (3.8). With this purpose we
present the proof in two steps.

Step 1. Consider

(SA+D) y(n+ 1) = (A(n) +D(n))y(n) + s(n+ 1), n ∈ N
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and we show that for each s ∈ ℓ10(N, X) there is a unique ys ∈ ℓ∞Y (N, X) such that (ys, s)
satisfies (SA+D).

For each δ ∈ D(Q), consider

wδ : N → X, wδ(n) =

{
δ(n)− (A(n− 1) +D(n− 1))δ(n− 1), n ≥ 2

0, n = 1
.

Then, we observe that

(3.14) ∥wδ(n)− qδ(n)∥ ≤ ∥D(n− 1)∥ · ∥δ∥∞, ∀n ≥ 2

and so
∥wδ(n)∥ ≤ ∥wδ(n)− qδ(n)∥+ ∥qδ(n)∥

≤ ∥D(n− 1)∥ · ∥δ∥∞ + ∥qδ(n)∥, ∀n ≥ 2.
(3.15)

Since D ∈ ℓ1(N,B(X)) and qδ ∈ ℓ10(N, X) it yields that wδ ∈ ℓ10(N, X).

Let
W : (D(Q), ∥ · ∥Q) → ℓ10(N, X), W (δ) = wδ.

We deduce from (3.9), (3.12) and (3.15) that

∥W (δ)∥1 ≤ ∥D∥1∥δ∥∞ + ∥qδ∥1 ≤ ∥δ∥Q, ∀δ ∈ D(Q).

It follows that W is bounded.

From (3.14) we deduce that

(3.16) ∥(W −Q)(δ)∥1 = ∥wδ − qδ∥1 ≤ ∥D∥1 ∥δ∥∞ ≤ ∥D∥1∥δ∥Q,
for all δ ∈ D(Q). It follows from (3.16) and (3.12) that

∥W −Q∥ ≤ ∥D∥1 <
1

∥Q−1∥
,

and thus W is invertible. Hence, it yields that for every s ∈ ℓ10(N, X) there is a unique
ys ∈ ℓ∞Y (N, X) such that (ys, s) satisfies (SA+D).

Step 2. Let
C(n) : X → X, C(n) = ΦA+D(hn, hn−1).

Consider the systems

(C) x(n+ 1) = C(n)x(n), n ∈ N

and respectively

(SC) z(n+ 1) = C(n)z(n) + s(n+ 1), n ∈ N

with s ∈ ℓ1(N, X) and z ∈ ℓ∞(N, X).

We show that for every s ∈ ℓ∞0 (N, X) there exists a unique zs ∈ ℓ∞Y (N, X) such that
(zs, s) satisfies (SC).

Let ω̃ = ω+M . From Lemma 3.4 we have that α < 1, so ω̃ > ω+ cM . Then from (3.13),
by applying Proposition 3.1 we get that

(3.17) ∥ΦA+D(n, j)∥ ≤ M

(
n

j

)ω̃

, ∀n ≥ j.

From relation (3.17) it yields that

(3.18) ∥C(n)∥ = ∥ΦA+D(hn, hn−1)∥ ≤ Mhω̃, ∀n ∈ N.
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From (3.1), (3.7), (3.13) and (3.17) we obtain

∥C(n)−B(n)∥ = ∥ΦA+D(hn, hn−1)− ΦA(h
n, hn−1)∥

≤
hn−1∑

k=hn−1

∥ΦA(h
n, k + 1)∥ ∥D(k)∥ ∥ΦA+D(k, hn−1)∥

≤ cM2
hn−1∑

k=hn−1

(
hn

k + 1

)ω

ln
k + 1

k

(
k

hn−1

)ω̃

≤ cM2
hn−1∑

k=hn−1

ln
k + 1

k

(
hn

k + 1

)ω̃(
k

hn−1

)ω̃

< cM2hω̃
hn−1∑

k=hn−1

ln
k + 1

k

= cM2hω̃ lnh, ∀n ∈ N.

(3.19)

From (3.18), it follows that T : ℓ∞Y (N, X) → ℓ∞0 (N, X) defined by

(T (γ))(n) =

{
γ(n)− C(n− 1)γ(n− 1), n ≥ 2

0, n = 1

is a well-defined. Moreover, it is a bounded linear operator.

From (3.19) we deduce that

(3.20) ∥(T − V )(γ)(n)∥ ≤ ∥C(n− 1)−B(n− 1)∥ · ∥γ(n− 1)∥ < cM2hω̃ lnh ∥γ∥∞,

for all n ≥ 2 and all γ ∈ ℓ∞Y (N, X). From (3.20) it yields

(3.21) ∥T − V ∥ ≤ cM2hω̃ lnh.

Since c < α, it follows from (3.11) and (3.21) that

∥T − V ∥ <
1

∥V −1∥
.

This implies that T is invertible. Thus, we find that for each s ∈ ℓ∞0 (N, X) there exists a
unique zs ∈ ℓ∞Y (N, X) such that (zs, s) satisfies (SC).

Using the conclusions of Step 1 and Step 2, from Theorem 2.1 applied for (A + D) we
get that (A+D) has a polynomial dichotomy. □

Remark 3.3. Let us compare Theorem 3.1 with Theorem 5.1 in [23]. In order to do so, we
recall that in Theorem 5.1 from [23] it is proved that (A+D) has a polynomial dichotomy
provided that there exist a sufficiently small c > 0 and some ρ > 1 such that

(3.22) ∥D(n)∥ ≤ c

(n+ 1)ρ
n ∈ N.

Clearly, since
∞∑

n=1

1

(n+ 1)ρ
< +∞

we have that (3.22) implies (3.12) provided that c is sufficiently small. In addition, (3.22)
implies (3.13). Hence, by Theorem 3.1 we deduce that (A + D) has a polynomial di-
chotomy. Thus, Theorem 3.1 extends Theorem 5.1 in [23].
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In addition, Theorem 3.1 gives an upper bound for the constants c under which the
polynomial dichotomy of the perturbed system (A+D) is preserved.

On the other hand, in order to show that Theorem 3.1 generalizes Theorem 5.1 in [23],
we give an illustrative example:

Example 3.1. Let D be such that

(3.23) ∥D(n)∥ ≤


c ln

n+ 1

n
, n ∈

{
k2 : k ∈ N

}
c

(n+ 1)[ln(n+ 1)]2
, n ̸∈

{
k2 : k ∈ N

}
where c > 0.

Then, for c sufficiently small, we can apply Theorem 3.1 and thus, we deduce that
(A+D) has a polynomial dichotomy.

But, clearly, Theorem 5.1 in [23] is not applicable to this class of perturbations.
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[26] Dragičević, D.; Zhang, W. Asymptotic stability of nonuniform behaviour. Proc. Amer. Math. Soc. 147 (2019),
2437-2451.
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