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A fast contraction algorithm using two inertial
extrapolations for variational inclusion problem and data
classification

SUTHEP SUANTAI1, PRASIT CHOLAMJIAK3 , PAPATSARA INKRONG3 and SUPARAT
KESORNPROM2∗

ABSTRACT. In this paper, we propose a new method for solving variational inclusion problems in Hilbert
spaces. This algorithm uses two inertial terms to speed up the convergence. In order to avoid computing the
Lipschitz stepsize, we use an updated stepsize which is not necessary to know the Lipschitz constant of the
operator. The weak convergence is established under some mild conditions. We present numerical performance
of the proposed algorithm and compare our algorithm with other algorithms in literature. Finally, we deduce
our algorithm for solving the convex minimization problem and give an application to the data classification
problem of heart failure dataset.

1. INTRODUCTION

Let H be a real Hilbert space, A : H → 2H be a set-valued mapping and f : H → H
be a single-valued nonlinear mapping. We consider the following variational inclusion
problem (VIP):

find a point x∗ ∈ H such that 0 ∈ A(x∗) + f(x∗).(1.1)

If f ≡ 0, then VIP reduces to the inclusion problem [25] which is finding a point x∗ ∈ H
such that

0 ∈ A(x∗).(1.2)

We observe that VIP is general in the sense that it includes optimization problem, optimal
control, mathematical programming and so on, see [1, 6, 13, 20, 24, 30]. Moudafi [20]
showed that x∗ is a solution of (1.1) if and only if x∗ = JA

λ (I − λf)(x∗), for all λ > 0,
where JA

λ : H → H is the resolvent operator associated with A and λ defined by

JA
λ (x) = (I + λA)−1(x), x ∈ H.(1.3)

We know that JA
λ is a single-valued and nonexpansive mapping.

In recent years, several authors studied and paid their attentions on VIP and provided
various iterative algorithms for solving such problem, see for examples, [8, 12, 17, 27, 28,
34] and the reference therein. A popular one was introduced by Rockafellar [25] which is
called the proximal point algorithm (PPA):

xk+1 = JA
λk
(xk), λk ⊂ (0,+∞).(1.4)
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In 2001, Alvarez and Attouch [2] introduced the inertial proximal point algorithm
(iPPA) for a maximal monotone operator as follows: x0, x1 ∈ H and

xk+1 = JA
λk
(xk + αk(xk − xk−1)),(1.5)

where αk ∈ [0, 1]. They proved weak convergence theorem by assuming
∑∞

k=1 αk∥xk −
xk−1∥2 < +∞. The extrapolation term αk(xk − xk−1) can accelerate the convergence
properties; see [4, 9, 23].

In 2018, Dong et al. [11] introduced a general inertial Mann algorithm to accelerate
Mann algorithm as follows: x0, x1 ∈ H and

wk = xk + αk(xk − xk−1),

yk = xk + δk(xk − xk−1),

xk+1 = (1− λk)wk + λkT (yk),(1.6)

where T : H → H is a nonexpansive mapping and the sequences {αk}, {δk} and {λk}
satisfy conditions in [11]. Recently, several authors studied two-step inertial methods and
multi-step inertial methods (see for example [15, 18, 19, 26, 32, 33]).

In 2014, Cai et al. [7] studied convergence rate of the projection and contraction algo-
rithms for variational inequalities.

In 2018, Zhang and Wang [31] introduced a contraction algorithm by combining opti-
mal step as follows:

yk = JA
λk
(xk − λkf(xk))

xk+1 = xk − γβkd(xk, yk),

where

d(xk, yk) = (xk − yk)− λk(f(xk)− f(yk)),

βk =
ϕ(xk, yk)

∥d(xk, yk)∥2
,

and

ϕ(xk, yk) = ⟨xk − yk, d(xk, yk)⟩,(1.7)

where γ ∈ (0, 2) and the stepsize λk satisfies the conditions in [31]. They proved weak
convergence theorems for solving VIP.

In 2023, Dey [10] introduced a hybrid inertial and contraction proximal point algorithm
for a monotone variational inclusion as follows: x0, x1 ∈ H and

ᾱk =

{
min{α, τk

∥xk−xk−1∥} if xk ̸= xk−1

α otherwise

wk = xk + αk(xk − xk−1),

yk = JA
λk
(wk − λkf(wk))

zk = wk − γβkd(wk, yk)

d(wk, yk) = (wk − yk)− λk(f(wk)− f(yk))

ϕ(wk, yk) = ⟨wk − yk, d(wk, yk)⟩

βk =

{
ϕ(wk,yk)

∥d(wk,yk)∥2 if d(wk, yk) ̸= 0

0 if d(wk, yk) = 0

xk+1 = (1− θk − ηk)xk + θkzk(1.8)

where α > 0, γ ∈ (0, 2) and {λk}, {τk}, {θk} and {ηk} are defined as in [10].
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According to the algorithms of Zhang and Wang [31] and Dey [10], it depends on the
Lipschitz constant, which is generally not easy to compute in practice. In 2021, Hieu et
al. [30] used the stepsize which is updated over each iteration. These stepsizes are not
necessary to know the Lipschitz constant of the operator.

In this paper, we design and modify a contraction algorithm by combining the opti-
mal step with inertial terms and updated stepsize which are introduced by Dong et al.
[11] and Hieu et al. [30], respectively. We prove a weak convergence theorem for solving
the variational inclusion problem in Hilbert spaces. Numerical examples in finite dimen-
sional spaces are presented to show the efficiency of our algorithm and to compare it with
algorithms in literature review. Moreover, the proposed algorithm is applied to solve the
convex minimization problem and the data classification problem.

This paper is organized as follows. In Section 2, we provide some basic preliminaries.
In Section 3, we introduce a new algorithm and prove the weak convergence theorem in
Hilbert spaces. In Section 4, we present numerical examples in finite dimensional spaces.
In Section 5, we provide applications to solve the convex minimization problem and the
data classification problem. We finally give conclusion in Section 6.

2. PRELIMINARIES AND LEMMAS

In this section, we provide some basic definitions and lemmas which will be used in
the sequel. Let H be a real Hilbert space. In what follows, we use the following notations:

• the symbol ⇀ stands for the weak convergence.
• the symbol → stands for the strong convergence.

Recall that a mapping T : H → H is said to be
(1) nonexpansive if

∥Tx− Ty∥ ≤ ∥x− y∥, ∀x, y ∈ H.

(2) firmly-nonexpansive if

⟨Tx− Ty, x− y⟩ ≥ ∥Tx− Ty∥2, ∀x, y ∈ H.

We note that if T is firmly-nonexpansive, then I − T is also firmly-nonexpansive.
(3) L-Lipschitz continuous, if there exists a constant L > 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ H.

(4) monotone if for all x, y ∈ H ,

⟨Tx− Ty, x− y⟩ ≥ 0.

(5) A multi-valued mapping B : H → 2H is called monotone if for all x, y ∈ H

⟨u− v, x− y⟩ ≥ 0, for all (x, u), (y, v) ∈ G(A),

where its graph is defined by

G(A) = {(x, y) ∈ H ×H : y ∈ A(x)}.
(6) A multi-valued mapping A : H → 2H is maximally monotone if its graph is not

properly contained in the graph of any other monotone operators.
It is well-known that A is maximally monotone if and only if for (x, y) ∈ H × H ,

⟨x− v, y − w⟩ ≥ 0 for every (v, w) ∈ G(A) implies y ∈ A(x).

Lemma 2.1. [3] Let A : H → 2H be a maximal monotone mapping and let f : H → H be a
Lipschitz continuous mapping. Then the mapping A+ f is a maximal monotone mapping.

Lemma 2.2. (Demiclosedness principle[14]) Let C be a nonempty closed convex subset of a real
Hilbert space H and let T : C → C be a nonexpansive mapping. If xk ⇀ x ∈ C and lim

k→∞
∥xk −

Txk∥ = 0, then x = Tx.
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Lemma 2.3. [22] Let {ak}, {bk} and {ck} be real positive sequences such that

ak+1 ≤ (1 + ck)ak + bk, k ≥ 1.

If
∑∞

k=1 ck < +∞ and
∑∞

k=1 bk < +∞, then lim
k→+∞

ak exists.

Lemma 2.4. (Opial theorem [21]) Let C be a nonempty subset of a real Hilbert space H and {xk}
be a sequence in H that satisfies the following properties:

(i) lim
k→∞

∥xk − x∥ exists for each x ∈ C;

(ii) every weak sequential cluster point of {xk} belongs to C.
Then {xk} converges weakly to a point in C.

3. MAIN RESULTS

This section presents a fast contraction algorithm for solving VIP. We next introduce
the following lemma for proving our theorem.

Lemma 3.5. Let φ−1 ≥ 0, φ0 ≥ 0 and {φk}, {ηk} and {δk} be nonnegative real sequences
satisfying

φk+1 ≤ (1 + ηk)φk + (ηk + δk)φk−1 + δkφk−2, k ≥ 1.(3.9)

Then

φk+1 ≤ M ·
k∏

j=1

(1 + 2ηj + 2δj),(3.10)

where M = max{φ−1, φ0, φ1}. Furthermore, if
∑∞

k=1 ηk < +∞ and
∑∞

k=1 δk < +∞, then
{φk} is bounded.

Proof. By using mathematical induction, we can prove this lemma. See also [16]. □

In this work, we assume the following conditions to obtain the weak convergence of
our algorithm.

Condition (i) The solution set Φ of VIP (1.1) is nonempty.
Condition (ii) The mapping f is monotone and Lipschitz continuous.
Condition (iii) The mapping A is maximally monotone.

Algorithm 3.1. Suppose that {ηk} and {δk} are nonnegative sequences satisfying
∑∞

k=1 ηk <
+∞ and

∑∞
k=1 δk < +∞. Let γ ∈ (0, 2), λ0 > 0, µ ∈ (0, 1) and x−1, x0 and x1 be chosen

arbitrary. Calculate xk+1 as follows:

wk = xk + ηk(xk − xk−1) + δk(xk−1 − xk−2)(3.11)

yk = JA
λk
(wk − λkf(wk))(3.12)

d(wk, yk) = (wk − yk)− λk(f(wk)− f(yk))(3.13)
xk+1 = wk − γβkd(wk, yk),(3.14)

where

λk+1 =

{
min{ µ∥wk−yk∥

∥f(wk)−f(yk)∥ , λk} if f(wk)− f(yk) ̸= 0

λk otherwise
(3.15)

and

βk =
ϕ(wk, yk)

∥d(wk, yk)∥2
, ϕ(wk, yk) = ⟨wk − yk, d(wk, yk)⟩.(3.16)
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Remark 3.1. It is easy to see that the sequence {λk} is non-increasing. Since f is Lipschitz
continuous, there exists L > 0 such that ∥f(wk)− f(yk)∥ ≤ L∥wk − yk∥. Hence,

λk+1 = min

{
µ∥wk − yk∥

∥f(wk)− f(yk)∥
, λk

}
≥ min{µ

L
, λk}.(3.17)

By the definition of {λk}, it implies that the sequence {λk} is bounded from below by
min{λ0,

µ
L}. So, we obtain limk→∞ λk = λ > 0.

Lemma 3.6. In (3.12), if wk = yk for some k, then wk ∈ Φ.

Proof. If wk = yk, then wk = JA
λk
(wk − λkf(wk)). It follows that

wk = (I + λkA)−1(wk − λkf(wk)) ⇔ wk − λkf(wk) ∈ wk + λkAwk

⇔ −f(wk) ∈ Awk

⇔ 0 ∈ Awk + f(wk).(3.18)

Hence wk ∈ Φ. □

Lemma 3.7. Let x∗ ∈ Φ. Assume that the sequence {xk} generated by Algorithm 3.1. If {λk}
satisfies (3.15), then under Conditions (i), (ii) and (iii), we have

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + η2k∥xk − xk−1∥2 + 2ηk∥xk − x∗∥∥xk − xk−1∥
+δ2k∥xk−1 − xk−2∥2 + 2δk∥xk − x∗∥∥xk−1 − xk−2∥
+2ηkδk∥xk − xk−1∥∥xk−1 − xk−2∥
−γ(2− γ)β2

k∥d(wk, yk)∥2.(3.19)

Proof. By definition of xk+1, we have

∥xk+1 − x∗∥2 = ∥wk − γβkd(wk, yk)− x∗∥2

= ∥wk − x∗∥2 − 2γβk⟨wk − x∗, d(wk, yk)⟩+ γ2β2
k∥d(wk, yk)∥2.(3.20)

Since JA
λk

is firmly-nonexpansive and JA
λk
(I − λkf)x

∗ = x∗, it follows that

⟨JA
λk
(I − λkf)wk − JA

λk
(I − λkf)x

∗, (I − λkf)wk − (I − λkf)x
∗⟩

≥ ∥JA
λk
(I − λkf)wk − JA

λk
(I − λkf)x

∗∥2

= ∥yk − x∗∥2.(3.21)

From (3.21), we have

⟨yk − x∗, wk − yk − λkf(wk)⟩
= ⟨JA

λk
(I − λkf)wk − JA

λk
(I − λkf)x

∗, wk − yk − x∗ + x∗

−λkf(x
∗) + λkf(x

∗)− λkf(wk)⟩
= ⟨JA

λk
(I − λkf)wk − JA

λk
(I − λkf)x

∗, wk − λkf(wk)− x∗

+λkf(x
∗) + x∗ − λkf(x

∗)− yk⟩
= ⟨JA

λk
(I − λkf)wk − JA

λk
(I − λkf)x

∗, (I − λkf)wk − (I − λkf)x
∗

+(I − λkf)x
∗ − yk⟩

= ⟨JA
λk
(I − λkf)wk − JA

λk
(I − λkf)x

∗, (I − λkf)wk − (I − λkf)x
∗⟩

+⟨JA
λk
(I − λkf)wk − JA

λk
(I − λkf)x

∗, (I − λkf)x
∗ − yk⟩

≥ ∥yk − x∗∥2 + ⟨yk − x∗, x∗ − λkf(x
∗)− yk⟩

= −⟨yk − x∗, λkf(x
∗)⟩.(3.22)
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From (3.22), we obtain

⟨yk − x∗, wk − yk − λk(f(wk)− f(x∗))⟩
= ⟨yk − x∗, wk − yk − λkf(wk)⟩+ ⟨yk − x∗, λkf(x

∗)⟩
≥ −⟨yk − x∗, λkf(x

∗)⟩+ ⟨yk − x∗, λkf(x
∗)⟩

= 0.(3.23)

By the monotonicity of f and λk > 0, we see that

⟨yk − x∗, λkf(yk)− λkf(x
∗)⟩ ≥ 0.(3.24)

Combining (3.23) and (3.24), we have

⟨yk − x∗, wk − yk − λk(f(wk)− f(yk))⟩
= ⟨yk − x∗, d(wk, yk)⟩
≥ 0.(3.25)

So, from (3.25), we obtain

⟨wk − x∗, d(wk, yk)⟩ = ⟨wk − yk, d(wk, yk)⟩+ ⟨yk − x∗, d(wk, yk)⟩
≥ ⟨wk − yk, d(wk, yk)⟩
= ϕ(wk, yk).(3.26)

From (3.20), (3.26) and definition of βk, we have

∥xk+1 − x∗∥2 = ∥wk − x∗∥2 − 2γβk⟨wk − x∗, d(wk, yk)⟩+ γ2β2
k∥d(wk, yk)∥2

≤ ∥wk − x∗∥2 − 2γβkϕ(wk, yk) + γ2β2
k∥d(wk, yk)∥2

= ∥wk − x∗∥2 − 2γβk
ϕ(wk, yk)

∥d(wk, yk)∥2
∥d(wk, yk)∥2 + γ2β2

k∥d(wk, yk)∥2

= ∥wk − x∗∥2 − 2γβ2
k∥d(wk, yk)∥2 + γ2β2

k∥d(wk, yk)∥2

= ∥wk − x∗∥2 − γ(2− γ)β2
k∥d(wk, yk)∥2.(3.27)

Consider,

∥wk − x∗∥2 = ∥xk + ηk(xk − xk−1) + δk(xk−1 − xk−2)− x∗∥2

= ∥xk − x∗ + ηk(xk − xk−1)∥2 + δ2k∥xk−1 − xk−2∥2

+2⟨xk − x∗ + ηk(xk − xk−1), δk(xk−1 − xk−2)⟩
= ∥xk − x∗∥2 + η2k∥xk − xk−1∥2 + 2⟨xk − x∗, ηk(xk − xk−1)⟩

+δ2k∥xk−1 − xk−2∥2 + 2⟨xk − x∗, δk(xk−1 − xk−2)⟩
+2⟨ηk(xk − xk−1), δk(xk−1 − xk−2)⟩

≤ ∥xk − x∗∥2 + η2k∥xk − xk−1∥2 + 2ηk∥xk − x∗∥∥xk − xk−1∥
+δ2k∥xk−1 − xk−2∥2 + 2δk∥xk − x∗∥∥xk−1 − xk−2∥
+2ηkδk∥xk − xk−1∥∥xk−1 − xk−2∥.(3.28)

From (3.27) and (3.28), we obtain

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 + η2k∥xk − xk−1∥2 + 2ηk∥xk − x∗∥∥xk − xk−1∥
+δ2k∥xk−1 − xk−2∥2 + 2δk∥xk − x∗∥∥xk−1 − xk−2∥
+2ηkδk∥xk − xk−1∥∥xk−1 − xk−2∥
−γ(2− γ)β2

k∥d(wk, yk)∥2.(3.29)

□



A fast contraction algorithm using two inertial extrapolations ... 743

Lemma 3.8. Let x∗ ∈ Φ. Assume that {xk} is generated by Algorithm 3.1. Then limk→∞ ∥xk −
x∗∥ exists.

Proof. By definition of wk, we see that

∥wk − x∗∥ = ∥xk + ηk(xk − xk−1) + δk(xk−1 − xk−2)− x∗∥
≤ ∥xk − x∗∥+ ηk∥xk − xk−1∥+ δk∥xk−1 − xk−2∥.(3.30)

From (3.27) and (3.30), it follows that

∥xk+1 − x∗∥ ≤ ∥xk − x∗∥+ ηk∥xk − xk−1∥+ δk∥xk−1 − xk−2∥
≤ ∥xk − x∗∥+ ηk(∥xk − x∗∥+ ∥xk−1 − x∗∥)

+δk(∥xk−1 − x∗∥+ ∥xk−2 − x∗∥)
= (1 + ηk)∥xk − x∗∥+ (ηk + δk)∥xk−1 − x∗∥+ δk∥xk−2 − x∗∥.(3.31)

Using Lemma 3.5, we conclude that

∥xk+1 − x∗∥ ≤ M

k∏
j=1

(1 + 2ηj + 2δj),(3.32)

where M = max{∥x1−x∗∥, ∥x0−x∗∥, ∥x−1−x∗∥}. Moreover, by Lemma 3.5, we also have
{xk} is bounded. Hence,

∑∞
k=1 ηk∥xk − xk−1∥ < +∞ and

∑∞
k=1 δk∥xk−1 − xk−2∥ < +∞.

Using Lemma 2.3 and (3.31), it shows that limk→∞ ∥xk − x∗∥ exists. □

Lemma 3.9. Let x∗ ∈ Φ. Assume that {xk} is generated by Algorithm 3.1. Then limk→∞ ∥wk −
yk∥ = 0.

Proof. From (3.15), we can see that

λk+1 = min{ µ∥wk − yk∥
∥f(wk)− f(yk)∥

, λk} ≤ µ∥wk − yk∥
∥f(wk)− f(yk)∥

.(3.33)

It follows that

∥f(wk)− f(yk)∥ ≤ µ

λk+1
∥wk − yk∥.(3.34)

From definition of d(wk, yk) and (3.34), we obtain

∥d(wk, yk)∥2 = ∥(wk − yk)− λk(f(wk)− f(yk))∥2

= ∥wk − yk∥2 + λ2
k∥f(wk)− f(yk)∥2 − 2λk⟨wk − yk, f(wk)− f(yk)⟩

≤ ∥wk − yk∥2 +
µ2λ2

k

λ2
k+1

∥wk − yk∥2 + 2λk|⟨wk − yk, f(wk)− f(yk)⟩|

≤ ∥wk − yk∥2 +
µ2λ2

k

λ2
k+1

∥wk − yk∥2 + 2λk∥wk − yk∥∥f(wk)− f(yk)∥

≤ ∥wk − yk∥2 +
µ2λ2

k

λ2
k+1

∥wk − yk∥2 +
2µλk

λk+1
∥wk − yk∥2

= (1 +
µ2λ2

k

λ2
k+1

+
2µλk

λk+1
)∥wk − yk∥2

= (1 +
µλk

λk+1
)2∥wk − yk∥2.(3.35)
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From definition of ϕ(wk, yk) and (3.34), we have

ϕ(wk, yk) = ⟨wk − yk, d(wk, yk)⟩
= ⟨wk − yk, (wk − yk)− λk(f(wk)− f(yk))⟩
= ∥wk − yk∥2 − λk⟨wk − yk, f(wk)− f(yk)⟩
≥ ∥wk − yk∥2 − λk∥wk − yk∥∥f(wk)− f(yk)∥

≥ ∥wk − yk∥2 −
µλk

λk+1
∥wk − yk∥2

= (1− µλk

λk+1
)∥wk − yk∥2.(3.36)

Combining (3.35) and (3.36), we have

βk =
ϕ(wk, yk)

∥d(wk, yk)∥2
=

⟨wk − yk, d(wk, yk)⟩
∥d(wk, yk)∥2

≥
(1− µλk

λk+1
)

(1 + µλk

λk+1
)2
.(3.37)

Hence, using Lemma 3.7 and Lemma 3.8, we can show that

lim
k→∞

∥d(wk, yk)∥ = 0.(3.38)

By (3.36), we have

lim
k→∞

∥wk − yk∥ = 0.(3.39)

□

Theorem 3.1. Let x∗ ∈ Φ. Assume that Conditions (i), (ii) and (iii) hold. Then the sequence
{xk} generated by Algorithm 3.1 weakly converges to a point in Φ.

Proof. Let x∗ ∈ Φ. From (3.11), we have

lim
k→∞

∥xk − wk∥ = 0.(3.40)

Using Lemma 3.9 and (3.40), we obtain

lim
k→∞

∥xk − yk∥ = 0.(3.41)

Let x̂ be a weak cluster point of {xk}. Then there exists a subsequence {xki
} of {xk}

such that xki ⇀ x̂ as i → ∞. Also from (3.41), we get yki ⇀ x̂ as i → ∞.
Next, we will show that x̂ is in Φ. We know that f is Lipschitz continuous. From

Lemma 2.1, we know that A + f is maximally monotone. Let (v, u) ∈ G(A + f), that is,
u− f(v) ∈ A(v). Since yki

= JA
λki

(wki
− λki

f(wki
)), we get

wki
− λki

f(wki
) ∈ (I + λki

A)(yki
)(3.42)

that is,

wki
− yki

− λki
f(wki

)

λki

∈ Ayki
.(3.43)

Since A is maximally monotone, we have

⟨v − yki
, u− f(v)− wki − yki − λkif(wki)

λki

⟩ ≥ 0.(3.44)
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Hence,

⟨v − yki , u⟩ ≥ ⟨v − yki , f(v) +
wki − yki − λkif(wki)

λki

⟩

= ⟨v − yki , f(v)− f(yki) + f(yki)− f(wki) +
wki − yki

λki

⟩

≥ ⟨v − yki
, f(yki

)− f(wki
)⟩+ ⟨v − yki

,
wki − yki

λki

⟩.(3.45)

Since f is Lipschitz continuous and limi→∞ ∥wki − yki∥ = 0, we obtain

lim
i→∞

∥f(yki
)− f(wki

)∥ = 0.(3.46)

Since limi→∞ λki = λ > 0, it follows from (3.45) that

lim
i→∞

⟨v − yki
, u⟩ = ⟨v − x̂, u⟩ ≥ 0.(3.47)

Since A + f is maximally monotone, we get 0 ∈ (A + f)(x̂). Hence x̂ ∈ Φ. Using Lemma
2.4, we conclude that {xk} converges weakly to a point in Φ. We complete the proof. □

4. NUMERICAL EXAMPLES

In this section, we present numerical examples to show the efficiency of Algorithm 3.1
and compare with Algorithm 1 in [10] and Algorithm 3.1 in [31].

Let H = Rn, f = ZTZ, where Z = (zij)n×n with randomly generated zij ∈ [1, 100].
It is well-known that f is monotone and Lipschitz continuous with Lipschitz constant
L = ∥f∥2. We take the initial points x−1 = (ci) ∈ Rn, x0 = (di) ∈ Rn and x1 = (ei) ∈ Rn

where ci, di, ei ∈ [0, 1] are generated randomly. Let A be an upper triangular n× n matrix
with all entries one. It is obvious that A is maximally monotone.

For the numerical comparison, we set the parameters for Algorithm 3.1: γ = 0.1, λ0 =
0.01, µ = 0.9, ηk = 1

(k+1)7 and δk = 1
(5k+2)8 .

For Algorithm 3.1 in [31], we set the parameters: γ = 0.1 and λk = k
(2k+1)L .

For Algorithm 1 in [10], we set the parameters: γ = 0.1, λk = 1
2L , α = 0.3, τk = 1

k2 ,
ηk = 1

5k+1 and θk = 0.8− ηk.
Setting ∥xk+1 − xk∥ ≤ ε as the stop criterion, we get the results with the number of

iterations, CPU time and different ε in Tables 1 and 2. We can see from both Tables 1 and

TABLE 1. Comparison of Algorithm 3.1, Algorithm 3.1 in [31] and Algo-
rithm 1 in [10] with n = 500

ε
Algorithm 3.1 Algorithm 3.1 in [31] Algorithm 1 in [10]

CPU time (sec) Iterations CPU time (sec) Iterations CPU time (sec) Iterations
10−2 0.4228 69 0.4896 84 0.3767 70
10−5 0.8747 135 1.5676 276 1.4867 277
10−10 1.5604 244 3.3727 611 3.2118 589
10−15 2.1503 353 5.1333 948 4.7967 905
10−20 2.6121 463 7.0057 1283 6.6597 1220

2 that the number of iterations and CPU time of Algorithm 3.1 are less than Algorithm 3.1
in [31] and Algorithm 1 in [10]. This means that our Algorithm 3.1 performs better than
other algorithms for each ε.

Next, we show the graphs of error plotting with the stop criterion ε = 10−10.
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TABLE 2. Comparison of Algorithm 3.1, Algorithm 3.1 in [31] and Algo-
rithm 1 in [10] with n = 700

ε
Algorithm 3.1 Algorithm 3.1 in [31] Algorithm 1 in [10]

CPU time (sec) Iterations CPU time (sec) Iterations CPU time (sec) Iterations
10−2 1.0009 75 1.1228 88 0.8879 75
10−5 1.8836 139 3.4410 281 3.3517 283
10−10 3.3561 248 7.6150 615 7.0599 594
10−15 4.7721 358 11.4553 954 11.1163 912
10−20 5.8551 467 17.0702 1290 15.5555 1229

FIGURE 1. Plotting graph of comparison for each algorithm with n = 500

FIGURE 2. Plotting graph of comparison for each algorithm with n = 700

In Figures 1 and 2, we observe that Algorithm 3.1 has a better convergence than Algo-
rithm 3.1 in [31] and Algorithm 1 in [10] in terms of iterations.

5. APPLICATIONS

5.1. Convex minimization problem (CMP). Next, we study the convex minimization
problem (CMP):

min
x∈H

(g(x) + f(x)),(5.48)
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where H is a real Hilbert space, g : H → (−∞,+∞] is proper, lower semicontinuous and
covex and f : H → R is convex and differentiable with the Lipschitz continuous gradient
denoted by ∇f . It is known that x∗ is a minimizer of g + f if and only if

0 ∈ (∂g +∇f)(x∗),(5.49)

where ∂g denotes the subdifferential of g.
In a real Hilbert space H , the proximal operator of g is defined by

Proxβg(x) := argminv∈H

{
g(v) +

1

2β
∥v − x∥2

}
, x ∈ H,β > 0.

It is well-known that

Proxβg(x) = (I + β∂g)−1(x) = J∂g
β (x),

where ∂g is the subdifferential of g defined by

∂g(x) := {x∗ ∈ H : g(x) + ⟨y − x, x∗⟩ ≤ g(y), y ∈ H}.
From [5], ∂g is a maximal monotone operator and proxβg is firmly nonexpansive.

So we obtain the following results.

Algorithm 5.1. Suppose that {ηk} and {δk} are nonnegative sequences satisfying
∑∞

k=1 ηk <
+∞ and

∑∞
k=1 δk < +∞. Let γ ∈ (0, 2), λ0 > 0, µ ∈ (0, 1) and x−1, x0 and x1 be chosen

arbitrary. Calculate xk+1 as follows:

wk = xk + ηk(xk − xk−1) + δk(xk−1 − xk−2)

yk = Proxλkg(wk − λkf(wk))

d(wk, yk) = (wk − yk)− λk(f(wk)− f(yk))

xk+1 = wk − γβkd(wk, yk),

where

λk+1 =

{
min{ µ∥wk−yk∥

∥f(wk)−f(yk)∥ , λk} if f(wk)− f(yk) ̸= 0

λk otherwise

and

βk =
ϕ(wk, yk)

∥d(wk, yk)∥2
, ϕ(wk, yk) = ⟨wk − yk, d(wk, yk)⟩.

5.2. Data classification problem. In this section, we apply Algorithm 5.1 to data classi-
fication problem in heart failure prediction [35]. Heart failure refers to a wide range of
symptoms caused by abnormalities in the functioning of the heart. It may develop due
to abnormalities in either the structure or functioning of a patient’s heart, which, as a re-
sult, causes the heart to become inefficient in pumping blood to the rest of the body or in
retrieving blood from the rest of the body.

In particular, we apply extreme learning machine (ELM) to predict whether a patient
is prone to heart failure depending on multiple attributes and compare results with pro-
vided by the machine learning algorithms. This dataset [35] involves 918 observations, 11
attributes and output class which are presented in Table 3.
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TABLE 3. Details and statistical quantisation of all attributes

Attributes Description x̄ S.D. Max Min C.V.
Age Age of the patient (years) 53.51 9.43 77 28 0.18
Sex Sex of the patient 1.21 0.41 2 1 0.34
Chest Pain Type Chest pain type 3.25 0.93 4 1 0.29
RestingBP Resting blood pressure (mm Hg) 132.40 18.51 200 0 0.14
Cholesterol Serum cholesterol (mm/dl) 198.80 109.38 603 0 0.55
FastingBS Fasting blood sugar 0.23 0.42 1 0 1.81
RestingECG Resting electrocardiogram results 1.60 0.81 3 1 0.50
MaxHR Maximum heart rate achieved 136.81 25.46 202 60 0.19
Exercise Angina Exercise-induced angina 1.60 0.50 2 1 0.31
Oldpeak ST (Numeric value measured in depression) 0.89 1.07 6.2 -2.6 1.20
ST Slope The slope of the peak exercise ST segment 1.64 0.61 3 1 0.37
Output class Heart disease, Normal - - - - -

x̄: Mean, S.D.: Standard deviation, C.V.: Coefficient of variation

Let {(xk, yk) : xk ∈ RN , yk ∈ RM , k = 1, 2, 3, ...,W} be a training set consisting of W
distinct samples and xk, yk are represented in Table 4. Given a single hidden layer of
ELM, the output function at the i-th hidden node is defined as follows:

hi(x) = U(⟨ai, x⟩+ bi),

where U , ai and bi are denoted in Table 4.

TABLE 4. Notations of parameters

Notations Meaning
xk The input training data
yk The training target
ai The weight at the i-th hidden node
bi The bias of the i-th hidden node
ωi The optimal weight at the i-th hidden node to output layer
U The activation function
L The number of hidden nodes

The single-hidden layer feed forward neural networks (SLFNs) with L hidden nodes is
defined as:

On =

L∑
i=1

ωihi(xn),

where ωi is defined in Table 4. The hidden layer output matrix A is defined as follows:

A =

 U(⟨a1, x1⟩+ b1) · · · U(⟨aL, x1⟩+ bL)
...

. . .
...

U(⟨a1, xW ⟩+ b1) · · · U(⟨aL, xW ⟩+ bL)


We aim to find an optimal weight ω = [ω1, ..., ωL]

T by ELM such that Aω = χ, where
χ = [t1, ..., tW ]T is the training target data. On the otherhand, the convex minimization
problem is to find the solution ω via the least absolute shrinkage and selection operator
(LASSO) [29] as follows:

min
ω∈RL

{∥Aω − χ∥22 + ξ∥ω∥1},(5.50)
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where ξ is a regularization parameter. We see that if f(ω) = ∥Aω−χ∥22 and g(ω) = ξ∥ω∥1,
then the problem (5.50) is reduced to the problem (5.48).

We select the binary cross-entropy loss function in conjunction with the sigmoid acti-
vation function defined by

Loss = − 1

J

J∑
j=1

vj log v̂j + (1− vj) log(1− v̂j)(5.51)

where v̂j and vj are the j-th scalar value in the model output and the corresponding target
value, respectively. The number of scalar values in the model output is defined by J .

Confusion matrix is defined as follows

TABLE 5. Confusion matrix for binary classification

Prediction
Positive Negative

Actual value Positive True positive
(TP)

False negative
(FN)

Negative False positive
(FP)

True negative
(TN)

Accuracy of algorithm is represented by accuracy, precision, recall and F1-score, which
are calculated by Table 5:

• Precision =
TP

TP + FP
× 100%

• Recall =
TP

TP + FN
× 100%

• Accuracy =
TP + TN

TP+ FP + TN+ FN
× 100%

• F1-score =
2× (Precision× Recall)

Precision + Recall
.

We use sigmoid for the activation function with hidden nods L = 40 and set regu-
larization ξ = 1 × 10−5. For Algorithm 5.1, we set x−1, x0, x1 = (1, 1, ...., 1), γ = 1.9,
λ0 = 1 × 10−4, µ = 0.9, ηk = 1

(k+1)7 and δk = 1
(k+100)2 . We compare Algorithm 5.1 with

other traditional machine leaning method, the results are reported in Table 6.

TABLE 6. The performance in comparison of Algorithm 5.1 with tradi-
tional machine learning methods

Machine leaning method Training time Precision Recall F1-score Accuracy
Logistic regression 7.4022 87.2 86.2 86.7 85.2
K neighbors 14.4760 82.9 83.0 82.9 81.2
Support vector machine 5.2009 88.2 87.0 87.6 86.2
Random forest 16.3060 90.2 86.3 88.2 86.6
Decision tree 5.3715 85.4 83.0 84.2 82.2
ELM (Algorithm 5.1) 0.1896 87.3 100 93.2 87.3

In Table 6, we observe that Algorithm 5.1 performs the best accuracy, F1-score and
recall. This shows that our algorithm has the highest probability of classifying for heart
failure prediction dataset [35].

Next, we show the results for loss value of training data and testing data in Table 7.



750 S. Suantai et al.

TABLE 7. Loss values of Algorithm 5.1

Iterations Loss
Training Test

1 0.284051 0.167517
2 1.321680 1.327856
3 0.250835 0.438841
4 0.246140 0.407872
...

...
...

698 0.213145 0.263093
699 0.213140 0.263091
700 0.213134 0.263089

We present graphs of the accuracy and loss of training data and testing data for over-
fitting of Algorithm 5.1.

FIGURE 3. Plotting accuracy of Algorithm 5.1

FIGURE 4. Plotting loss of Algorithm 5.1

In Figures 3 and 4, we see that training accuracy (blue line) and validation accuracy
(red line) increase. Moreover, the training loss and validation loss values have decreased.
This means that Algorithm 5.1 can be used to classify effectively and has a good fitting
model in the training dataset [35].
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6. CONCLUSIONS

In this paper, we have introduced a contraction algorithm using two inertial terms with
updated stepsize for solving the variational inclusion problem in Hilbert spaces. Under
some suitable conditions, we have provided the weak convergence of the algorithm. The
efficiency of our algorithm has been shown by comparing our algorithm with other algo-
rithms in the literature review in finite dimensional spaces. Moreover, our algorithm has
been applied to the data classification problem in heart failure prediction dataset [35]. The
results of our algorithm to predict disease is 87.3% which is more efficient than traditional
machine learning methods.
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