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Weak and Strong Convergence of Split Douglas-Rachford
Algorithms for Monotone Inclusions

TIANQI LV and HONG-KUN XU

ABSTRACT. We are concerned in this paper with the convergence analysis of the primal-dual splitting (PDS)
and the split Douglas-Rachford (SDR) algorithms for monotone inclusions by using an operator-oriented ap-
proach. We shall show that both PDS and SDR algorithms can be driven by a (firmly) nonexpansive mapping in
a product Hilbert space. We are then able to apply the Krasnoselskii-Mann and Halpern fixed point algorithms
to PDS and SDR to get weakly and strongly convergent algorithms for finding solutions of the primal and dual
monotone inclusions. Moreover, an additional projection technique is used to derive strong convergence of a
modified SDR algorithm.

1. INTRODUCTION

Let H and K be real Hilbert spaces with inner product ⟨·, ·⟩ and norm ∥ · ∥, respectively.
Consider a primal convex optimization problem of the form

(1.1) minimize
x∈H

F (x) := f(x) + g(Lx),

where f ∈ Γ0(H) and g ∈ Γ0(K), and L : H → K is a bounded linear operator. Here Γ0(H)
(resp., Γ0(K)) denotes the family of all proper, lower semicontinuous, convex functions on
H (resp., K) taking values in R := (−∞,∞].

The dual problem of (1.1) (assuming F ∈ Γ0(H)) is

(1.2) maximize
v∈K

F ∗(v) := −f∗(L∗v)− g∗(−v).

Here f∗ and g∗ are the conjugate of f and g, respectively, and L∗ is the adjoint of L defined
via the relation: ⟨Lx, v⟩ = ⟨x, L∗v⟩ for all x ∈ H and v ∈ K. Recall that f∗ is defined by
f∗(x∗) = sup{⟨x∗, x⟩ − f(x) : x ∈ H} for x∗ ∈ H, and g∗ is similarly defined.

Note that the dual problem (1.2) can equivalently be rewritten as a minimization prob-
lem as follows:

(1.3) minimize
v∈K

(−F ∗(v)) := f∗(L∗v) + g∗(−v).

Problem (1.1), together with its dual (1.2), can be extended to monotone inclusions.
Indeed, let A : H → 2H and B : K → 2K be maximal monotone operators. Consider the
inclusion problem:

(1.4) Find (x̂, v̂) ∈ H ×K such that 0 ∈ Ax̂+ L∗v̂, 0 ∈ B−1v̂ − Lx̂.

We shall use Z to denote the set of solutions of (1.4), and always assume Z ̸= ∅ throughout
the rest of this paper.

Note that when A = ∂f and B = ∂g, the subdifferentials of f ∈ Γ0(H) and g ∈ Γ0(K),
respectively, the inclusion (1.4) is reduced to the problem of finding solutions x̂ ∈ H of
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the primal problem (1.1) and v̂ ∈ K of the dual problem (1.2), namely, the first-order
optimality conditions hold:

(1.5) 0 ∈ ∂f(x̂) + L∗ ◦B ◦ L(x̂), 0 ∈ (∂g)−1(v̂)− L ◦ (∂f)−1 ◦ L∗(−v̂).

This leads to the general primal and dual inclusions as follows:

(1.6) Primal inclusion: find x̂ ∈ H with the property 0 ∈ Ax̂+ L∗BLx̂

and

(1.7) Dual inclusion: find v̂ ∈ K with the property 0 ∈ B−1v̂ − LA−1L∗(−v̂).

Observe that the inclusion (1.4) is equivalent to the inclusions (1.6) and (1.7) in the sense
that if (x̂, v̂) ∈ Z , then x̂ and v̂ solve (1.6) and (1.7), respectively, and conversely, if x̂ ∈ H
is a solution to the primal inclusion (1.6), then there exists v̂ ∈ K (indeed, v̂ ∈ BLx̂ such
that 0 ∈ Ax̂+ L∗v̂), which is a solution to the dual inclusion (1.7), such that (x̂, v̂) ∈ Z .

In the case where L = I (assuming H = K), then the primal inclusion (1.6) turns out to
be the problem of finding a zero of the sum of A and B, that is,

(1.8) find x̂ ∈ H with the property 0 ∈ Ax̂+Bx̂.

The set of solutions of (1.8) is denoted by zer(A+B) and assume that it is nonempty.
This problem can be solved by the Douglas-Rachford (DR) splitting method of Lions

and Mercier [12, Theorem 1], which generates a sequence (zn) by the following iteration:

(1.9) zn+1 = JτB(2JτAzn − zn) + zn − JτAzn, n = 0, 1, · · · ,
where τ > 0, the initial point z0 ∈ H is chosen arbitrarily, and JτA = (I + τA)−1 is the
resolvent of τA. Lions and Mercier [12] proved that (zn) converges weakly to a point ẑ
and JτAẑ ∈ zer(A+B).

Turning to the general inclusion (1.6) in the case where L is not the identity I , one needs
the maximal monotonicity of L∗BL in order to directly apply DR (1.9), which is compu-
tationally costly due to sub-iterations for computing the resolvent JτL∗BL, as pointed out
in [2]. Consequently, splitting methods for separating the operator L from the resolvent
of B are needed. In [23], Vũ introduced such a splitting method, known as primal-dual
splitting (PDP) method, as follows:

Algorithm:{
xn+1 = (1− λn)xn + λnJτA(xn − τL∗vn)

vn+1 = (1− λn)vn + λnJσB−1(vn + σL(2JτA(xn − τL∗vn)− xn)),
(1.10)

where the initial guess (x0, v0) ∈ H ×K and the parameters τ, σ > 0 satisfy the condition
τσ∥L∥2 < 1.

A more general splitting method, referred to as split Douglas-Rachford (SDR), is stud-
ied in [2], which updates iterations as follows (we here use Ω to replace Υ in [2, Algorithm
1.2]).

Algorithm: 
vn = Σ(I − JΣ−1B)(Lxn +Σ−1un)

zn = xn − ΩL∗vn

xn+1 = JΩAzn

un+1 = ΣL(xn+1 − xn) + vn

(1.11)

where Ω : H → H and Σ : K → K are strongly monotone, self-adjoint, linear operators
such that Ω−1 − L∗ΣL is monotone (equivalently, ∥Σ 1

2LΩ
1
2 ∥ ≤ 1). Algorithm (1.11) is a

nonstandard metric version of DR for (1.6) [2].
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Primal-dual and Douglas-Rachford methods were extensively studied (see [4, 5, 3, 17,
8, 12, 13] and references therein).

We are aimed in this paper at addressing the convergence analysis of the primal-dual
splitting (PDS) and split Douglas-Rachford (SDR) algorithms for monotone inclusions
by using an operator-oriented approach. More precisely, we show that both PDS and
SDR algorithms can be driven by a (firmly) nonexpansive mapping in a product Hilbert
space. This enables us to apply the Krasnoselskii-Mann (KM) and Halpern fixed point
algorithms to PDS and SDR to get weakly and strongly convergent algorithms for finding
solutions of the primal and dual problems (1.6) and (1.7), i.e., elements of Z . Our obtained
results improve and generalize the corresponding results of [23] and [2].

The paper is organized as follows. In the next section we introduce some concepts of
nonexpansive and monotone mappings together with basic tools and the KM and Halpern
fixed point algorithms. In Section 3 we prove the main convergence results on PDP (1.10)
and SDR algorithm (1.11).

2. PRELIMINARIES

Let H be a real Hilbert space with inner product ⟨·, ·⟩ and norm ∥ · ∥, respectively. We
use I to denote the identity on H. Given mappings G : H → H and A : H → 2H. We say
that

• G is nonexpansive [6] if ∥Gx−Gy∥ ≤ ∥x− y∥ for all x, y ∈ H.
• G is firmly nonexpansive [6] if ⟨x − y,Gx − Gy⟩ ≥ ∥Gx − Gy∥2 for all x, y ∈ H;

equivalently, 2G− I is nonexpansive.
• A is monotone [19] if ⟨x1 − x2, y1 − y2⟩ ≥ 0 for all xi ∈ dom(A) and yi ∈ Axi

(i = 1, 2). Here dom(A) = {x ∈ H : Ax ̸= ∅} is the (effective) domain of A.
Furthermore, A is maximal monotone if A is monotone and its graph, gra(A) :=
{(x, y) ∈ H ×H : x ∈ dom(A), y ∈ Ax}, is not properly contained in the graph of
any other monotone operator.

The set of fixed point of G is denoted as Fix(G), that is, Fix(G) = {x ∈ H : Gx = x}.
A typical example of firmly nonexpansive mappings is projections. Recall that the

projection from H onto a nonempty closed convex subset C of H is defined as

PC(x) := argmin
y∈C

∥x− y∥2, x ∈ H.

Recall that the resolvent of a monotone mapping A : H → 2H is defined as JA = (I +
A)−1. It is known that if A is maximal monotone, then JA is firmly nonexpansive on the
entire space H . More details on monotone operators can be found from the monographs
[20, 16, 1].

To prove the convergence of our algorithms in Section 3, we need two fundamental
fixed point iteration algorithms, the Krasnoselskii-Mann (KM) [10, 14] and Halpern [7, 9]
algorithms.

The KM algorithm for the fixed point problem x = Gx generates a sequence (un) via
the iteration process:

(2.12) un+1 = (1− αn)un + αnGun, n = 0, 1, · · · ,

where the initial guess u0 ∈ H and (αn) ⊂ [0, 1] (in certain circumstances, (αn) ⊂ [0, 2]).
The Halpern algorithm for the fixed point problem x = Gx generates a sequence (un)

through the iteration procedure:

(2.13) un+1 = βnu+ (1− βn)Gun, n = 0, 1, · · · ,
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where the initial guess u0 ∈ H and (βn) ⊂ [0, 1]. The fixed point u ∈ H is referred to as
anchor.

The following convergence for KM and Halpern algorithms (2.12) and (2.15) are known.

Theorem 2.1. [18] Let G : H → H be nonexpansive with Fix(G) ̸= ∅ and suppose (αn) ⊂ [0, 1]
satisfies the divergence condition

(2.14)
∞∑

n=1

αn(1− αn) = ∞.

Then the sequence (un) generated by the KM algorithm (2.12) converges weakly to a point of
Fix(G). Moreover, if G is firmly nonexpansive, then (αn) can be relaxed to the range (αn) ⊂ [0, 2]
satisfying the divergence condition

∞∑
n=1

αn(2− αn) = ∞.

Theorem 2.2. [24, 22, 11] Let G : H → H be nonexpansive with Fix(G) ̸= ∅ and suppose
(βn) ⊂ (0, 1) satisfies the conditions:

(i) limn→∞ βn = 0 and
∑∞

n=1 βn = ∞,
(ii) either

∑∞
n=1 |βn+1 − βn| < ∞ or limn→∞(βn+1/βn) = 1.

Then the sequence (un) generated by the Halpern algorithm (2.15) converges strongly to PFix(G)u.
Moreover, if G is firmly nonexpansive, then the condition (ii) is superfluous. In addition, if one
takes βn = 1

n+1 for n ≥ 0 and u = u0, that is,

(2.15) un+1 =
1

n+ 1
u+

n

n+ 1
Gun, n = 0, 1, · · · ,

then one has

∥un −Gun∥ ≤ 2∥u0 − u∗∥
n+ 1

, n ≥ 0, u∗ ∈ Fix(G).

In the rest of this paper, we shall use the standard notation:
• xn ⇀ x means that (xn) converges to x weakly,
• xn → x means that (xn) converges to x strongly.

3. CONVERGENCE ANALYSIS OF ALGORITHMS

Let H and K be real Hilbert spaces with inner product ⟨·, ·⟩ and norm ∥ · ∥, respectively.
We begin with an improved simple case of Vũ’s algorithm [23].

3.1. Convergence of Vũ’s Algorithm (1.10). Vũ [23, Algorithm (3.3), p. 671] introduced
a splitting algorithm for solving (1.6) and (1.7). The case of m = 1 with no perturbation
errors is the algorithm (1.10). Because Vũ’s proof of the general case (see the proof of
[23, Theorem 3.1]) is complicated (i.e., not easily understood), we will include a detailed
simpler proof of the following theorem which also relaxes the choice of the step-size pa-
rameters (λn) from the interval [ε, 1] for some 0 < ε < 1 [23, Theorem 3.1] to the interval
[0, 2].

Theorem 3.3. Suppose the primal and dual problems (1.6) and (1.7) are solvable, i.e., Z ̸= ∅.
Suppose τσ∥L∥2 < 1 and (λn) ⊂ [0, 2] satisfies the divergence condition

(3.16)
∞∑

n=1

λn(2− λn) = ∞.
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Then the sequences (xn) and (vn) defined by the PDP algorithm (1.10) converge weakly to a
solution x̂ of the primal problem (1.6) and a solution v̂ of the dual problem (1.7), respectively, i.e.,
(x̂, v̂) ∈ Z .

Proof. We endow the product space H×K with the standard inner product and norm:

⟨(x, v), (x′, v′)⟩ = ⟨x, v⟩+ ⟨x′, v′⟩, ∥(x, v)∥ =
√
∥x∥2 + ∥v∥2

for (x, v), (x′, v′) ∈ H ×K.
Define operators M,S : H×K → 2H×K by

M(x, v) = (Ax,B−1v), (x, v) ∈ H ×K
and

S(x, v) = (L∗v,−Lx), (x, v) ∈ H ×K.

Then we have that M,S are maximal monotone; moreover, S is skew (i.e., S∗ = −S).
Note that we have

(3.17) (M + S)(x, v) = (Ax+ L∗v,B−1v − Lx), (x, v) ∈ H ×K
is maximal monotone. Moreover,

(3.18) (x̂, v̂) ∈ zer(M + S) ⇐⇒ (x̂, v̂) ∈ Z.

Namely, finding a point in the solution set Z is equivalently converted to finding a zero
of the maximal monotone mapping (M + S). To this end we define a linear operator
V : H×K → H×K by

V (x, v) = (
1

τ
x− L∗v,

1

σ
v − Lx), (x, v) ∈ H ×K.

Then it is not hard to find that V is self-adjoint (i.e., V ∗ = V ) and ρ-strongly positive (see
also a generalization in Lemma 3.1), with

ρ = min{τ−1 − ∥L∥2/η, σ−1 − η},
where η is such that τ∥L∥2 < η < σ−1 (which is possible due to the assumption τσ∥L∥2 <
1), in particular, we may take η = (τ∥L∥2 + σ−1)/2.

As a matter of fact, we have, for each (x, v) ∈ H ×K,

⟨(x, v), V (x, v)⟩ = ⟨x, 1
τ
x− L∗v⟩+ ⟨v, 1

σ
− Lx⟩

=
1

τ
∥x∥2 + 1

σ
∥v∥2 − 2⟨Lx, v⟩

≥ 1

τ
∥x∥2 + 1

σ
∥v∥2 − (η−1∥L∥2∥x∥2 + η∥v∥2)

= (
1

τ
− ∥L∥2

η
)∥x∥2 + (

1

σ
− η)∥v∥2

≥ min

{
1

τ
− ∥L∥2

η
,
1

σ
− η

}
(∥x∥2 + ∥v∥2)

= ρ∥(x, v)∥2.

This also implies that ∥V −1∥ ≤ ρ−1.
Set pn = JτA(xn − τL∗vn), yn = 2pn − xn, and qn = JσB−1(vn + σLyn). This simplifies

the algorithm (1.10) as{
xn+1 = (1− λn)xn + λnpn = xn + λn(pn − xn),

vn+1 = (1− λn)vn + λnqn = vn + λn(qn − vn).
(3.19)
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Following the definitions of pn and qn, we also have
1

τ
(xn − pn)− L∗vn ∈ A(pn),

1

σ
(vn − qn)− L(xn − pn) ∈ B−1(qn)− L(pn).

Set wn = (xn, vn) and w′
n = (pn, qn). Then it is readily seen that

V (wn − w′
n) = (

1

τ
(xn − pn)− L∗(vn − qn),

1

σ
(vn − qn)− L(xn − pn)).

Thus, we get V (wn − w′
n) ∈ (M + S)w′

n and V (wn) ∈ (M + S + V )w′
n. Consequently,

w′
n = (M + S + V )−1V (wn) = (I + V −1(M + S))−1wn = JV −1(M+S)wn.

In the product space H×K, the algorithm (3.19) is rewritten as

wn+1 = wn + λn(w
′
n − wn)

= wn + λn

(
JV −1(M+S)wn − wn

)
.(3.20)

Renorm H×K by

⟨w,w′⟩V = ⟨w, V (w′)⟩, ∥w∥V =
√

⟨w, V (w)⟩
for w = (x, v), w′ = (x′, v′) ∈ H×K. We now show that V −1(M+S) is maximal monotone
with respect to this new inner product. Indeed, since M + S is monotone, we have for
w = (x, v), w′ = (x′, v′) ∈ H ×K
⟨w − w′, V −1(M + S)w − V −1(M + S)w′⟩V = ⟨w − w′, (M + S)w − (M + S)w′⟩ ≥ 0.

Because (M+S) is maximal monotone and V is strongly positive, V −1(M+S) is maximal
monotone. It then follows that the resolvent JV −1(M+S) is firmly nonexpansive. We may
now apply Theorem 2.1 to (3.20) to assert that (wn) converges weakly to a point ŵ =
(x̂, v̂) ∈ Fix(JV −1(M+S)) = zer(M +S) = Z under the divergence condition (3.16). Hence,
xn ⇀ x̂ and vn ⇀ v̂, and (x̂, v̂) ∈ Z . □

Taking λn = 1 for all n, the algorithm (1.10) is reduced to the following algorithm:{
xn+1 = JτA(xn − τL∗vn)

vn+1 = JσB−1(vn + σL(2JτA(xn − τL∗vn)− xn)).
(3.21)

The result below follows immediately.

Corollary 3.1. Suppose the primal and dual problems (1.6) and (1.7) are solvable and τσ∥L∥2 <
1. Then the sequences (xn) and (vn) defined by the algorithm (3.21) converge weakly to a solution
x̂ of the primal problem (1.6) and a solution v̂ of the dual problem (1.7), respectively.

3.2. Convergence of Split Douglas-Rachford Algorithm. In this subsection we discuss
the convergence analysis of the algorithm (1.11). This algorithm is known as split Douglas-
Rachford (SDR) algorithm [2] which uses nonstandard metrics Ω and Σ. Here Ω : H → H
and Σ : K → K are strongly monotone self-adjoint linear operators.

Lemma 3.1. Suppose ∥Σ 1
2LΩ

1
2 ∥ < 1 and define V : H×K → H×K by

(3.22) V (x, v) = (Ω−1x− L∗v,Σ−1v − Lx), (x, v) ∈ H ×K.

Then V is ρ-strongly monotone, self-adjoint, and linear, with

ρ =
1− ∥Σ 1

2LΩ
1
2 ∥2

∥Ω 1
2 ∥2 + ∥Σ 1

2 ∥2
.
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Proof. For (x, v) ∈ H ×K, we derive that

⟨(x, v), V (x, v)⟩ = ⟨x,Ω−1x− L∗v⟩+ ⟨v,Σ−1v − Lx⟩
= ⟨x, (Ω−1 − L∗ΣL)x⟩+ ⟨ΣLx− v, Lx⟩+ ⟨v,Σ−1v − Lx⟩
= ⟨x, (Ω−1 − L∗ΣL)x⟩+ ∥Σ−1v − Lx∥2Σ.(3.23)

Similarly, we also derive that

⟨(x, v), V (x, v)⟩ = ⟨v, (Σ−1 − LΩL∗)v⟩+ ∥Ω−1x− L∗v∥2Ω.(3.24)

Set θ := ∥Σ 1
2LΩ

1
2 ∥ < 1. Then ∥Σ 1

2LΩ
1
2 y∥ ≤ θ∥y∥ for each y ∈ H. Now it follows that for

each x ∈ H

⟨x, (Ω−1 − L∗ΣL)x⟩ = ⟨x,Ω−1x⟩ − ⟨ΣLx,Lx⟩

= ∥Ω− 1
2x∥2 − ∥Σ 1

2LΩ
1
2Ω− 1

2x∥2

= ∥y∥2 − ∥Σ 1
2LΩ

1
2 y∥2 (with y = Ω− 1

2x)

≥ (1− θ2)∥y∥2

≥ 1− θ2

∥Ω 1
2 ∥2

∥x∥2 =
1− ∥Σ 1

2LΩ
1
2 ∥2

∥Ω 1
2 ∥2

∥x∥2(3.25)

since ∥y∥ = ∥Ω− 1
2x∥ ≥ ∥Ω 1

2 ∥−1∥x∥.
Similarly, we get

⟨v, (Σ−1 − LΩL∗)v⟩ ≥ 1− ∥Ω 1
2L∗Σ

1
2 ∥2

∥Σ 1
2 ∥2

∥v∥2.(3.26)

Multiply t ∈ (0, 1) to Eq. (3.25) and (1− t) to Eq. (3.26), respectively, and add them up to
get (noticing ∥Σ 1

2LΩ
1
2 ∥ = ∥Ω 1

2L∗Σ
1
2 ∥)

⟨(x, v), V (x, v)⟩ ≥ t
1− ∥Σ 1

2LΩ
1
2 ∥2

∥Ω 1
2 ∥2

∥x∥2 + (1− t)
1− ∥Ω 1

2L∗Σ
1
2 ∥2

∥Σ 1
2 ∥2

∥v∥2

= (1− ∥Σ 1
2LΩ

1
2 ∥2)

(
t

∥Ω 1
2 ∥2

∥x∥2 + 1− t

∥Σ 1
2 ∥2

∥v∥2
)

≥ (1− ∥Σ 1
2LΩ

1
2 ∥2)min

{
t

∥Ω 1
2 ∥2

,
1− t

∥Σ 1
2 ∥2

}
(∥x∥2 + ∥v∥2).(3.27)

Notice that the min in (3.27) is maximized at t′ := ∥Ω
1
2 ∥2

∥Ω
1
2 ∥2+∥Σ

1
2 ∥2

, with minimum value of
1

∥Ω
1
2 ∥2+∥Σ

1
2 ∥2

. It then follows from (3.27) that

⟨(x, v), V (x, v)⟩ ≥ 1− ∥Σ 1
2LΩ

1
2 ∥2

∥Ω 1
2 ∥2 + ∥Σ 1

2 ∥2
(∥x∥2 + ∥v∥2).(3.28)

This completes the proof. □

3.2.1. Weak Convergence. We convert Algorithm (1.11) to another formulation in terms of
(xn, vn) which reads as follows:{

xn+1 = JΩA(xn − ΩL∗vn)

vn+1 = JΣB−1(vn +ΣL(2JΩA(xn − ΩL∗vn)− xn)).
(3.29)
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Note that vn+1 can also be written as

vn+1 = JΣB−1(vn +ΣL(2xn+1 − xn)).(3.30)

As a matter of fact, to get vn+1 in (3.29), we first utilize [1, Proposition 23.34(iii)] to obtain
I − ΣJΣ−1BΣ

−1 = JΣB−1 . We then derive from (1.11) that

vn+1 = Σ(I − JΣ−1B)(Lxn+1 +Σ−1un+1)

= Σ(Lxn+1 +Σ−1un+1)− ΣJΣ−1B(Lxn+1 +Σ−1un+1)

= ΣLxn+1 + un+1 − ΣJΣ−1BΣ
−1(ΣLxn+1 + un+1)

= (I − ΣJΣ−1BΣ
−1)(ΣLxn+1 + un+1)

= JΣB−1(ΣL(2xn+1 − xn) + vn)

= JΣB−1(ΣL(2JΩA(xn − ΩL∗vn)− xn) + vn).

This is (3.29).
Now consider the operator T on the product space H×K defined by

T (x, v) = (JΩA(x− ΩL∗v), JΣB−1(ΣL(2JΩA(x− ΩL∗v)− x) + v)) =: (x+, v+)(3.31)

for (x, v) ∈ H ×K, where x+ = JΩA(x− ΩL∗v) and v+ = JΣB−1(ΣL(2x+ − x) + v).

Lemma 3.2. We have Fix(T ) = Z .

Proof. Let (x, v) ∈ H ×K be given. We have

T (x, v) = (x, v) ⇔ x = x+ = JΩA(x− ΩL∗v) and v = v+ = JΣB−1(ΣL(2x+ − x) + v)

⇔ x− ΩL∗v ∈ (I +ΩA)x and ΣL(2x+ − x) + v ∈ (I +ΣB−1)v

⇔ −L∗v ∈ Ax and L(2x+ − x) ∈ B−1v

⇔ 0 ∈ Ax+ L∗v and 0 ∈ B−1v − Lx (note : 0 ∈ Ax+ L∗v ⇒ x+ = x)

⇔ (x, v) ∈ Z.

□

Lemma 3.3. We have Tw = JV −1(M+S)w for w = (x, v) ∈ H × K. Thus, T is firmly nonex-
pansive under the condition ∥Σ 1

2LΩ
1
2 ∥ < 1, with respect to the norm ∥ · ∥V .

Proof. Let w = (x, v) ∈ H × K be given and set JV −1(M+S)w = w′ = (x′, v′). Let us prove
that w′ = Tw = w+ = (x+, v+). We proceed as follows.

JV −1(M+S)w = w′ ⇒ w ∈ (I + V −1(M + S))w′ ⇒ V (w) ∈ (V +M + S)w′.

By the definitions of V and M +S in (3.22) and (3.17), respectively, the last relation is split
into the relations:

Ω−1x− L∗v ∈ Ω−1x′ − L∗v′ +Ax′ + L∗v′ = Ω−1x′ +Ax′,

Σ−1v − Lx ∈ Σ−1v′ − Lx′ +B−1v′ − Lx′ = Σ−1v′ − 2Lx′ +B−1v′.

It turns out that

x− ΩL∗v ∈ (I +ΩA)x′ ⇒ x′ = JΩA(x− ΩL∗v) = x+,

ΣL(2x′ − x) + v ∈ v′ +ΣB−1v′ ⇒ v′ = JΣB−1(ΣL(2x+ − x) + v) = v+.

Finally, if ∥Σ 1
2LΩ

1
2 ∥ < 1, then V is strongly positive, self-adjoint, and linear (see Lemma

3.1), thus V −1(M +S) is maximal monotone w.r.t. the inner product ⟨·, ·⟩V . Consequently,
as the resolvent of a maximal monotone operator, T is firmly nonexpansive. The proof is
complete. □
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Now we extend the algorithm (1.11) (or (3.29)) using the KM technique as follows:{
xn+1 = (1− λn)xn + λnJΩA(xn − ΩL∗vn)

vn+1 = (1− λn)vn + λnJΣB−1(ΣL(2JΩA(xn − ΩL∗vn)− xn) + vn))
(3.32)

where the initial guess (x0, v0) ∈ H ×K and (λn) ⊂ [0, 2].
We have the following convergence result.

Theorem 3.4. Suppose ∥Σ 1
2LΩ

1
2 ∥ < 1 and the divergence condition (3.16) holds. Then the

sequence {(xn, vn)} generated by the algorithm (3.32) converges weakly to a point in Z .

Proof. Setting wn = (xn, vn) and by virtue of (3.31), we can rewrite the algorithm (3.32) as

(3.33) wn+1 = (1− λn)wn + λnTwn,

where T = JV −1(M+S) is firmly nonexpansive by Lemma 3.3.
Applying Theorem 2.1, we assert that (wn) converges weakly to a point in Fix(T ) =

zer(M + S) = Z . □

Corollary 3.2. Suppose ∥Σ 1
2LΩ

1
2 ∥ < 1. Then the sequence {(xn, vn)} generated by the algorithm

(1.11) converges weakly to a point in Z .

Proof. This is a special case of Theorem 3.4 where λn = 1 for all n. □

3.2.2. Strong Convergence. The Krasnoselskii-Mann version of SDR algorithm (3.32), which
includes SDR (1.11), is not strongly convergent in the infinite-dimensional setting, in gen-
eral, unless additional conditions are assumed to satisfy. In this subsection we apply
Halpern’s method for modifying SDR (3.32) in order to get strongly convergent algo-
rithms. With the starting point (x0, v0) ∈ H ×K, we define (xn, vn) iteratively by{

xn+1 = βnx̃+ (1− βn)JΩA(xn − ΩL∗vn)

vn+1 = βnṽ + (1− βn)JΣB−1(ΣL(2JΩA(xn − ΩL∗vn)− xn) + vn))
(3.34)

for n = 0, 1, · · · , where (x̃, ṽ) ∈ H ×K is the anchor and (βn) ⊂ [0, 1].

Theorem 3.5. Assume Z ≠ ∅ and ∥Σ 1
2LΩ

1
2 ∥ < 1. Assume also (βn) satisfies the condition (i)

of Theorem 2.2, i.e., βn → 0 and
∑∞

n=1 βn = ∞. Then the sequence {(xn, vn)} generated by the
algorithm (3.34) converges strongly to a point (x̂, v̂) ∈ Z such that (x̂, v̂) = PZ(x̃, ṽ). Moreover,
if we take βn = 1

n+1 and (x̃, ṽ) = (x0, v0), that is, (3.34) reduces to{
xn+1 = 1

n+1x0 +
n

n+1JΩA(xn − ΩL∗vn)

vn+1 = 1
n+1v0 +

n
n+1JΣB−1(ΣL(2JΩA(xn − ΩL∗vn)− xn) + vn))

(3.35)

then we have the O(1/n) rate of convergence to zero for the asymptotic regularity of ∥wn − Twn∥
with wn = (xn, vn):

∥wn − Txw∥V ≤ 2∥w0 − w∗∥V
n+ 1

, n ≥ 0, w∗ ∈ Z.

Proof. In terms of the firmly nonexpansive mapping T as defined in (3.31), the algorithm
(3.34) can be rewritten in the product space H×K compactly as:

(3.36) wn+1 =
1

n+ 1
w0 +

n

n+ 1
Twn,

where wn = (xn, vn) for all n ≥ 0. The results now follow from Theorem 2.2. □
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Projection methods are extensively employed in optimization and fixed points. Ad-
ditional forcing projections can improve the weak convergence of the proximal point al-
gorithm [19] to strong convergence [21]. We now apply this idea to the SDR algorithm
(1.11). Our algorithm is defined as follows. For the sake of convenience, below we drop
the subscript V from both the inner product ⟨·, ·⟩V and norm ∥ · ∥V . Choose the initial
guess w0 = (x0, v0) ∈ H ×K arbitrarily. After wn = (xn, vn) is generated, we set

yn = Twn = w+
n = (x+

n , v
+
n ),(3.37)

x+
n = JΩA(xn − ΩL∗vn),

v+n = JΣB−1(vn +ΣL(2JΩA(xn − ΩL∗vn)− xn)),

En = {w ∈ H ×K : ⟨w − yn, wn − yn⟩ ≤ 0},(3.38)

Gn = {w ∈ H ×K : ⟨w − wn, w0 − wn⟩ ≤ 0}.(3.39)

The (n+ 1)th iterate wn+1 is then defined as the projection of the initial guess w0 onto the
intersection of the above constructed two half-spaces En and Gn, that is,

(3.40) wn+1 = PEn∩Gn(w0).

We first demonstrate that the algorithm (3.40) is well defined, namely, En ∩Gn ̸= ∅ for
all n ≥ 0. As a matter of fact, we have the following result.

Lemma 3.4. We have En ∩Gn ⊃ Z for n = 0, 1, 2, · · · .

Proof. First observe that we always have En ⊃ Z for each n ≥ 0. This is because wn−yn =
wn − JV −1(M+S)wn ∈ V −1(M +S)(wn). Thus, if w ∈ Z , i.e., 0 ∈ V −1(M +S)(w), then the
monotonicity of V −1(M + S) immediately implies that ⟨w − wn, wn − yn⟩ ≤ 0. Namely,
w ∈ En. Next, we use induction to prove the conclusion. For n = 0, since G0 = H×K, we
get E0 ∩ G0 ⊃ Z . Assume now En ∩ Gn ⊃ Z for some n > 0; then wn+1 is well defined
through the projection in (3.40), which implies that

⟨w0 − wn+1, w − wn+1⟩ ≤ 0 ∀w ∈ En ∩Gn ⊃ Z.

This particularly shows that Gn+1 ⊃ Z ; hence, En+1 ∩ Gn+1 ⊃ Z and the Lemma is
proved. □

We also need the following lemma.

Lemma 3.5. [15, Lemma 1.5] Let K be a nonempty closed convex subset of a Hilbert space H .
Let {xn} be a sequence in H and u ∈ H . Let q = PKu. If {xn} satisfies the conditions

(i) ωw(xn) ⊂ K,
(ii) ∥xn − u∥ ≤ ∥u− q∥ for all n.

Then xn → q.

Theorem 3.6. Assume Z ≠ ∅ and ∥Σ 1
2LΩ

1
2 ∥ < 1. Then the sequence {wn} = {(xn, vn)}

generated by the algorithm (3.40) converges strongly to a point w∗ = (x∗, v∗) ∈ Z such that
w∗ = PZ(w0).

Proof. First we observe from (3.40) and Lemma 3.4 that for each w′ ∈ Z , ∥wn+1 − w′∥ =
∥PEn∩Gn

(w0)− w′∥ ≤ ∥w0 − w′∥. Hence, {wn} is bounded.
By definition of Gn we get wn = PGn

(w0). This, together with the fact that wn+1 ∈ Gn,
implies that

∥wn+1 − wn∥2 = ∥PGn
(wn+1)− PGn

(w0)∥2

≤ ∥wn+1 − w0∥2 − ∥(I − PGn)wn+1 − (I − PGn)w0∥2

= ∥wn+1 − w0∥2 − ∥wn − w0∥2.
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It turns out that the sequence {∥wn−w0∥2} is increasing, and due to boundedness, {∥wn−
w0∥2} converges. It then also turns out that ∥wn+1 − wn∥2 → 0.

Since wn+1 ∈ En, it follows that

0 ≤ 2⟨wn+1 − yn, yn − wn⟩
= ∥wn+1 − wn∥2 − ∥wn+1 − yn∥2 − ∥yn − wn∥2.

Hence, ∥yn − wn∥ ≤ ∥wn+1 − wn∥ → 0. Since yn = Twn, we get ∥wn − Twn∥ → 0. By
the demiclosedness principle of nonexpansive mappings in a Hilbert space, we must have
ωw(wn) ⊂ Fix(T ) = Z ; that is, each weak cluster point of (wn) lies in Z .

Now set w∗ = PZ(w0). By the algorithm (3.40), it is evident that, for all n ≥ 1,

∥wn − w∗∥ = ∥PEn−1∩Gn−1w0 − w∗∥ ≤ ∥w0 − w∗∥.
Since we have already proved that ωw(wn) ⊂ Z , Lemma 3.5 is applicable and we finally
obtain wn → w∗. The proof is complete. □

We conclude the paper with the following strong convergence result on SDR (3.29)
with additional conditions imposed on the operators A and B, or on the solution set Z ,
respectively.

Theorem 3.7. Suppose ∥Σ 1
2LΩ

1
2 ∥ < 1 and one of the conditions below is satisfied:

(i) A and B are odd; i.e., A(−x) = −A(x) for all x ∈ H and B(−v) = −B(v) for all v ∈ K,
(ii) Z has nonempty interior.

Then the sequence {(xn, vn)} generated by SDR (3.29) converges in norm to a point in Z .

Proof. First observe that the sequence {(xn, vn)} generated by SDR (3.29) can be rewritten
as (wn = (xn, vn))

wn = Twn−1 = · · · = Tnw0, n = 0, 1, 2, · · · .
Since T = JV −1M is firmly nonexpansive (w.r.t. the norm ∥ · ∥V ; below we drop the
subscript V for the sake of convenience). Thus T is asymptotically regular, that is,

(3.41) lim
n→∞

∥Tn+1w − Tnw∥ = 0, ∀w ∈ H ×K.

(i) It is easily seen that the oddness of A andB implies that the resolvents JΩA and
JΣB−1 = I − ΣJΣ−1BΣ

−1 are odd as well. It then turns out that the mapping T defined
by (3.31) is also odd, which implies that T (0) = 0. Hence, (0, 0) ∈ Z . And for each
w ∈ H × K, the real nonnegative sequence {∥Tnw∥} is nonincreasing, hence convergent.
Set r = limn→∞ ∥Tnw0∥. Again since T is odd, we get for each fixed i ≥ 0,

∥Tn+iw0 + Tnw0∥ = ∥Tn+iw0 − Tn(−w0)∥ ≤ ∥Tn−1+iw0 + Tn−1w0∥.

This shows that {∥Tn+iw0+Tnw0∥}∞n=0 is nonincreasing. We further have, for n > m ≥ 0,

2r ≤ 2∥Tnw0∥ = ∥Tnw0 + Tn+iw0 + Tnw0 − Tn+iw0∥
≤ ∥Tnw0 + Tn+iw0∥+ ∥Tnw0 − Tn+iw0∥
≤ ∥Tmw0 + Tm+iw0∥+ ∥Tnw0 − Tn+iw0∥ (letting n → ∞)

→ ∥Tmw0 + Tm+iw0∥ ≤ ∥Tmw0∥+ ∥Tm+iw0∥ ≤ 2∥Tmw0∥ → 2r.

Consequently,

lim
n,m→∞

∥Tnw0 + Tmw0∥ = 2r.

Moreover, as n,m → ∞,

∥Tnw0 − Tmw0∥2 = 2(∥Tnw0∥2 + ∥Tmw0∥2)− ∥Tnw0 + Tmw0∥2 → 2(r2 + r2)− (2r)2 = 0
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and {Tnw0} is Cauchy, hence convergent in norm.
(ii) By assumption, we have some p ∈ int(Z) = int(Fix(T )). In other words, there exists

δ > 0 such that p+ δw ∈ Fix(T ) for all w ∈ H×K suhc that ∥w∥ ≤ 1. As wn+1 = Twn, we
derive (for each ∥w∥ ≤ 1)

∥wn+1 − p∥2 − 2δ⟨wn+1 − p, w⟩+ δ2∥w∥2 = ∥wn+1 − (p+ δw)∥2 = ∥Twn − (p+ δw)∥2

≤ ∥wn − (p+ δw)∥2 = ∥wn − p∥2 − 2δ⟨wn − p, w⟩+ δ2∥w∥2.

This results in that

2δ⟨wn − wn+1, w⟩ ≤ ∥wn − p∥2 − ∥wn+1 − p∥2.

Since this is valid for each w such that ∥w∥ ≤ 1, it follows immediately that

2δ∥wn − wn+1∥ ≤ ∥wn − p∥2 − ∥wn+1 − p∥2.

This implies that the series
∑∞

n=1 ∥wn − wn+1∥ is convergent, which ensures that {wn} is
Cauchy, hence convergent. This finishes the proof. □

Remark 3.1. An example of an odd maximal monotone operator is A = ∂φ, where φ ∈ Γ0(H) is
even, i.e., φ(−x) = φ(x) for all x ∈ H.
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