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On the iterative scheme generating methods using
mean-valued sequences

ATSUMASA KONDO

ABSTRACT. Using the Mann method and the shrinking projection method, we present generalized forms of
iterative scheme generating methods and compared them with prior frameworks. To this end, the properties of
mean-valued sequences are leveraged. Subsequently, we establish a convergence theorem similar to that devel-
oped by Martinez-Yanes and Xu. This approach highlights the difference between the conventional shrinking
projection method and the Martinez-Yanes and Xu variant. The proposed frameworks yield various types of it-
erative schemes for finding common fixed points, including a three-step iterative scheme. The class of mappings
considered incorporate general types, including nonexpansive mappings.

1. INTRODUCTION

Let C be a nonempty subset of a real Hilbert space H and let S be a mapping from C
into H . In H , an inner product ⟨·, ·⟩ and the induced norm ∥·∥ are defined. The notation
F (S) = {x ∈ C : Sx = x} is used to represent a set of all fixed points of S. A mapping
S : C → H is called nonexpansive if ∥Sx− Sy∥ ≤ ∥x− y∥ for all x, y ∈ C. Due to its
broad applicability, the construction of a sequence that converges to a fixed point of a
nonexpansive mapping has been a topic of significant research interest. For an overview
of fixed point theory and surrounding topics, readers may refer to the monographs by
Goebel and Kirk [13], Takahashi [41], and Goebel [12].

Following Baillon [4] and Shimizu and Takahashi [39], Atsushiba and Takahashi [2]
introduced the following iterative scheme using a mean-valued sequence:

(1.1) xn+1 = anxn + (1− an)
1

n2

n−1∑
k=0

n−1∑
l=0

SkT lxn

for all n ∈ N. In (1.1), an initial point x1 ∈ C is arbitrarily given and S, T : C → C are
commutative nonexpansive mappings. The sequence {an} (⊂ [0, 1]) is required to satisfy
certain conditions. Atsushiba and Takahashi proved a convergence theorem that weakly
approximates a common fixed point of S and T in a framework of a Banach space. For
iterative schemes using mean-valued sequences, see also [3, 32]. Using mean-valued se-
quences, Kondo [24] proved the following theorem:

Theorem 1.1 ([24]). Let C be a nonempty, closed, and convex subset of H . Let S, T : C → C be
quasi-nonexpansive and mean-demiclosed mappings such that F (S)∩F (T ) ̸= ∅. Let PF (S)∩F (T )

be the metric projection from H onto F (S)∩F (T ). Let {an}, {bn}, and {cn} be sequences of real
numbers in the interval [0, 1] such that an + bn + cn = 1 for all n ∈ N, limn→∞anbn > 0, and
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limn→∞ancn > 0. Define a sequence {xn} in C as follows:

x1 ∈ C : given,(1.2)

xn+1 = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn

for all n ∈ N = {1, 2, · · · }, where {zn} and {wn} are sequences in C that satisfy

(1.3) ∥zn − q∥ ≤ ∥xn − q∥ and ∥wn − q∥ ≤ ∥xn − q∥
for all q ∈ F (S) ∩ F (T ) and n ∈ N. Then, {xn} converges weakly to an element x̂ in F (S) ∩
F (T ), where x̂ ≡ limn→∞ PF (S)∩F (T )xn.

In Theorem 1.1, a “mean-demiclosed mapping” is defined as one where any weak clus-
ter point of a mean-valued sequence (as defined in (1.2)) is a fixed point. This class of
mappings includes nonexpansive mappings as special cases, as described in Proposition
2.1. Furthermore, more general types of mappings than nonexpansive mappings also fall
within the scope of this theorem, as discussed in the Appendix in the work of Kondo [26].

The required conditions for the sequences {zn} and {wn} in Theorem 1.1 are only the
ones specified in (1.3). For example, by setting zn = λnxn + (1− λn)Txn and wn =
µnxn + (1− µn)Sxn, we obtain the following iterative scheme:

zn = λnxn + (1− λn)Txn,(1.4)

wn = µnxn + (1− µn)Sxn,

xn+1 = anxn + bn
1

n

n−1∑
k=0

Skzn + cn
1

n

n−1∑
l=0

T lwn,

where an initial point x1 ∈ C is given. The coefficients of convex combinations λn and µn

are not subject to any restrictive conditions, except for λn, µn ∈ [0, 1]. It can be verified
that zn and wn in (1.4) satisfy the conditions in (1.3). Note that zn (resp. wn) in (1.4)
depends only on the mapping T (resp. S) at least directly. The iterative scheme in (1.4) is
a two-step scheme, similar to those presented by Ishikawa [17], Xu [47], Tan and Xu [46],
Berinde [5, 6], and Martinez-Yanes and Xu [34]. Furthermore, three-step iterative schemes
can be generated from Theorem 1.1. For instance, consider the following formulation:

wn = µnxn + (1− µn)Txn,(1.5)

zn = λnxn + (1− λn)Swn,

xn+1 = anxn + bn
1

n

n−1∑
k=0

Skzn + cn
1

n

n−1∑
l=0

T lzn.

The sequence {zn} in (1.5) fulfills the condition ∥zn − q∥ ≤ ∥xn − q∥ in (1.3). For three-step
iterative methods, see the work of Noor [37], Dashputre and Diwan [11], Phuengrattana
and Suantai [38], and Chugh et al. [10]. Four-step and more general types of iterative
schemes can also be generated from Theorem 1.1. Thus, this approach can be called an
iterative scheme generating method using mean-valued sequences.

In 2006, Martinez-Yanes and Xu [34] extended the CQ method by Nakajo and Takahashi
[36] and proved strong convergence theorems for finding a fixed point of a nonexpansive
mapping. Although Kondo [23, 25] applied the Martinez-Yanes and Xu method with
mean-valued sequences, iterative scheme generating methods have not yet been applied
to Martinez-Yanes and Xu type iterative schemes. In 2008, Takahashi et al. [42] proved a
strong convergence theorem using metric projections on shrinking sets. Their method is
known as the shrinking projection method. In 2023, Kondo [26] applied iterative scheme
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generating methods with mean-valued sequences to the CQ method and shrinking pro-
jection method and obtained various strong convergence theorems.

In this study, we generalize iterative scheme generating methods using mean-valued
sequences. Theorem 1.1 is obtained as a corollary from our result (Theorem 3.3). An
iterative scheme generating method with the shrinking projection method addressed in
Kondo [26] is also extended (Theorem 4.4). Subsequently, we apply this method to the
Martinez-Yanes and Xu iterative scheme with the shrinking projection method (Theorem
5.5). This approach clarifies the difference between the conventional shrinking projection
method and that incorporating the Martinez-Yanes and Xu method. By assuming several
additional conditions, the proposed iterative scheme generating method can be applied to
the Martinez-Yanes and Xu method. Our results yield various types of iterative schemes
for finding common fixed points, including two- and three-step iterative schemes. The
target mappings are of the general type, which are required to be quasi-nonexpansive with
a condition regarding mean-demiclosedness. This class includes nonexpansive mappings
and numerous other more general types of mappings.

The remaining article is organized as follows: Section 2 summarizes background infor-
mation. Section 3 proves a Mann type [33] theorem that generalizes Theorem 1.1. Sec-
tion 4 provides a generalized version of the iterative scheme generating method with the
shrinking projection method. Section 5 elaborates upon the Martinez-Yanes and Xu it-
erative scheme with the shrinking projection method. Section 6 presents two iterative
schemes derived from the result in Section 5 to demonstrate the applicability of the pro-
posed approach. Section 7 concisely concludes this article.

2. PRELIMINARIES

This section provides basic information and results. Let {xn} be a sequence in a real
Hilbert space H and let x be an element in H . We use the notation xn → x for strong
convergence and xn ⇀ x for weak convergence. A sequence {xn} converges weakly to
x if and only if for every subsequence {xni

} of {xn}, there exists a subsequence
{
xnj

}
of

{xni} such that xnj ⇀ x. A closed and convex subset of H is weakly closed.
Let x, y, z ∈ H and let a, b, c ∈ R such that a+ b+ c = 1. According to Maruyama et al.

[35] and Zegeye and Shahzad [48], the following relation holds:

∥ax+ by + cz∥2(2.6)

= a ∥x∥2 + b ∥y∥2 + c ∥z∥2 − ab ∥x− y∥2 − bc ∥y − z∥2 − ca ∥z − x∥2 .

For (2.6), assumptions a, b, c ∈ [0, 1] are not necessary. If a, b, c ∈ [0, 1], then the following
expression holds:

(2.7) ∥ax+ by + cz∥2 ≤ a ∥x∥2 + b ∥y∥2 + c ∥z∥2 .

Let F be a nonempty, closed, and convex subset of H . A metric projection from H onto
F is denoted by PF , that is, ∥x− PFx∥ ≤ ∥x− h∥ for all x ∈ H and h ∈ F . The metric
projection PF is nonexpansive and satisfies

⟨x− PFx, PFx− h⟩ ≥ 0 and(2.8)

∥x− PFx∥2 + ∥PFx− h∥2 ≤ ∥x− h∥2(2.9)

for all x ∈ H and h ∈ F . Let C be a nonempty, closed, and convex subset of H . Then, a
set D defined by

(2.10) D = {h ∈ C : 0 ≤ ⟨x, h⟩+ d}
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is closed and convex, where x ∈ H and d ∈ R, as indicated in Lemma 1.3 in the work of
Martinez-Yanes and Xu [34].

A mapping S : C → H with F (S) ̸= ∅ is termed quasi-nonexpansive if ∥Sx− q∥ ≤
∥x− q∥ for all x ∈ C and q ∈ F (S). The set of fixed points of a quasi-nonexpansive
mapping is closed and convex, as indicated by Itoh and Takahashi [18]. A nonexpansive
mapping with a fixed point is quasi-nonexpansive. Although the following proposition
has already been proved in previous studies in more general forms (Lemma 3.1 in Kondo
and Takahashi [29] or Lemma 2.3 in Kondo [24]), we present a proof here because the
property of a mapping shown in the following proposition is important for this study.

Proposition 2.1 ([29]; see also [24]). Let S : C → C be a nonexpansive mapping, where
C is a nonempty, closed, and convex subset of H . For a bounded sequence {zn} in C, define
Zn ≡ 1

n

∑n−1
l=0 Slzn (∈ C) for all n ∈ N. Let Zni

⇀ p, where {Zni
} is a subsequence of {Zn}.

Then, p ∈ F (S) holds.

Proof. As C is closed and convex, it is weakly closed. As {Zni
} is a sequence in C and

Zni
⇀ p, we have that p ∈ C. Hence, Sp (∈ C) exists. Our aim is to show that Sp = p. As

S is nonexpansive, it follows that∥∥Sl+1zn − Sp
∥∥2 ≤

∥∥Slzn − p
∥∥2

for all n ∈ N and l ∈ N∪{0}. From this, we have∥∥Sl+1zn − Sp
∥∥2 ≤

∥∥Slzn − Sp
∥∥2 + 2

〈
Slzn − Sp, Sp− p

〉
+ ∥Sp− p∥2 .

Summing these inequalities with respect to l from 0 to n− 1 and dividing by n yields

1

n
∥Snzn − Sp∥2 ≤ 1

n
∥zn − Sp∥2 + 2 ⟨Zn − Sp, Sp− p⟩+ ∥Sp− p∥2 .

As 1
n ∥Snzn − Sp∥2 ≥ 0, we have

0 ≤ 1

n
∥zn − Sp∥2 + 2 ⟨Zn − Sp, Sp− p⟩+ ∥Sp− p∥2

for all n ∈ N. Recall that {zn} is bounded and Zni
⇀ p is assumed. Replacing n by ni, we

obtain
0 ≤ 2 ⟨p− Sp, Sp− p⟩+ ∥Sp− p∥2

by taking the limit as i → ∞. This implies that 0 ≤ −∥Sp− p∥2. Thus, Sp = p. This
completes the proof. □

Following the work of Kondo [21], we term a mapping S : C → C mean-demiclosed if

(2.11) Znj
⇀ p (weak convergence) =⇒ p ∈ F (S)

under the setting of Proposition 2.1. According to Proposition 2.1, a nonexpansive map-
ping is mean-demiclosed.

In the next section, we focus on mappings that are quasi-nonexpansive and mean-
demiclosed. Although this class of mappings contains nonexpansive mappings as spe-
cial cases, it also includes more broad classes of mappings. For example, generalized
hybrid mappings [20], normally generalized hybrid mappings [45], 2-generalized hybrid
mappings [35], and normally 2-generalized hybrid mappings [28] are quasi-nonexpansive
and mean-demiclosed if they have fixed points. Information regarding these types of
mappings can be found in the Appendix in the work of Kondo [26].

The following lemma is used in the proof of Theorem 3.3:
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Lemma 2.1 ([43]). Let PF be the metric projection from H onto F , where F is a nonempty, closed,
and convex subset of H . Let {xn} be a sequence in H such that

(2.12) ∥xn+1 − q∥ ≤ ∥xn − q∥
for all q ∈ F and n ∈ N. Then, {PFxn} is convergent in F . In other words, there exists x̂ ∈ F
such that PFxn → x̂.

For the remaining analysis, we assume that there exists a common fixed point of non-
linear mappings. The following is a simplified version of classical results demonstrated
in 1965 by Browder [9], Göhde [14], and Kirk [19] in frameworks of Banach spaces:

Theorem 2.2 ([9, 14, 19]). Let C be a nonempty, closed, convex, and bounded subset of H . Let
S, T : C → C be nonexpansive mappings such that ST = TS. Then, S and T have a common
fixed point.

For common fixed point theorems for more general types of mappings, see the works
of Hojo [15], Kondo [22], and articles cited therein.

3. MANN METHOD

This section presents one of the main theorems of this article, which shows how to ap-
proximates common fixed points of two quasi-nonexpansive and mean-demiclosed map-
pings. Recall that nonexpansive mappings with fixed points are quasi-nonexpansive. Fur-
thermore, from Proposition 2.1, nonexpansive mappings are mean-demiclosed. Hence,
the theorem can be applied to nonexpansive mappings under the assumption that the
mappings have a common fixed point. The basic elements of the proof draw upon vari-
ous previous studies, e.g., [7, 8, 20, 27, 30, 31, 35, 45].

Theorem 3.3. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let S, T :
C → C be quasi-nonexpansive and mean-demiclosed mappings such that F (S) ∩ F (T ) ̸= ∅. Let
{an}, {bn} , and {cn} be sequences of real numbers in the interval [0, 1] such that an+bn+cn = 1
for all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Define a sequence {xn} in C as follows:

x1 ∈ C : given,

xn+1 = anyn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn(3.13)

for all n ∈ N, where {yn}, {zn}, and {wn} are sequences in C that satisfy

(3.14) ∥yn − q∥ ≤ ∥xn − q∥ , ∥zn − q∥ ≤ ∥xn − q∥ , ∥wn − q∥ ≤ ∥xn − q∥
for all q ∈ F (S) ∩ F (T ) and n ∈ N and

(3.15) xn − yn → 0

as n → ∞. Then, {xn} converges weakly to an element x̂ in F (S) ∩ F (T ), where x̂ ≡
limn→∞ PF (S)∩F (T )xn.

Proof. Define

Zn =
1

n

n−1∑
l=0

Slzn and Wn =
1

n

n−1∑
l=0

T lwn

for all n ∈ N. As C is convex, Zn and Wn are elements in C. Now, we can simply state
that xn+1 = anyn + bnZn + cnWn (∈ C).

Observe that

(3.16) ∥Zn − q∥ ≤ ∥zn − q∥ and ∥Wn − q∥ ≤ ∥wn − q∥
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for all q ∈ F (S) ∩ F (T ) and n ∈ N. Indeed, as S is quasi-nonexpansive and q ∈ F (S) ∩
F (T ) ⊂ F (S), it follows that

∥Zn − q∥ =

∥∥∥∥∥ 1n
n−1∑
l=0

Slzn − q

∥∥∥∥∥ =
1

n

∥∥∥∥∥
n−1∑
l=0

Slzn − nq

∥∥∥∥∥(3.17)

=
1

n

∥∥∥∥∥
n−1∑
l=0

(
Slzn − q

)∥∥∥∥∥ ≤ 1

n

n−1∑
l=0

∥∥Slzn − q
∥∥

≤ 1

n

n−1∑
l=0

∥zn − q∥ = ∥zn − q∥ .

Similarly, the second part of (3.16) also holds true as T is quasi-nonexpansive and q ∈
F (S) ∩ F (T ) ⊂ F (T ).

We verify that

(3.18) ∥xn+1 − q∥ ≤ ∥xn − q∥

for all q ∈ F (S) ∩ F (T ) and n ∈ N. Indeed, from (3.16) and (3.14), it follows that

∥xn+1 − q∥ = ∥anyn + bnZn + cnWn − q∥
= ∥an (yn − q) + bn (Zn − q) + cn (Wn − q)∥
≤ an ∥yn − q∥+ bn ∥Zn − q∥+ cn ∥Wn − q∥
≤ an ∥yn − q∥+ bn ∥zn − q∥+ cn ∥wn − q∥
≤ an ∥xn − q∥+ bn ∥xn − q∥+ cn ∥xn − q∥
= ∥xn − q∥ .

Thus, (3.18) holds as claimed. According to (3.18), the sequence {∥xn − q∥} is convergent
for all q ∈ F (S) ∩ F (T ), and {xn} is bounded. Furthermore, from Lemma 2.1, we have
that

{
PF (S)∩F (T )xn

}
is convergent in F (S) ∩ F (T ). Thus, x̂ = limn→∞ PF (S)∩F (T )xn

exists in F (S) ∩ F (T ).
Next, we aim to demonstrate that

(3.19) yn − Zn → 0 and yn −Wn → 0

as n → ∞. Here, q ∈ F (S) ∩ F (T ) is arbitrarily selected. Using (2.6), (3.16), and (3.14),
we obtain the following expressions:

∥xn+1 − q∥2

= ∥an (yn − q) + bn (Zn − q) + cn (Wn − q)∥2

= an ∥yn − q∥2 + bn ∥Zn − q∥2 + cn ∥Wn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

≤ an ∥yn − q∥2 + bn ∥zn − q∥2 + cn ∥wn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

≤ an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

= ∥xn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2 .
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As bncn ∥Zn −Wn∥2 ≥ 0, we obtain

anbn ∥yn − Zn∥2 + ancn ∥yn −Wn∥2 ≤ ∥xn − q∥2 − ∥xn+1 − q∥2 .

As {∥xn − q∥} is convergent, we have from the assumptions limn→∞anbn > 0 and limn→∞ancn >
0 that (3.19) holds true as claimed.

Observe that

(3.20) xn − Zn → 0 and xn −Wn → 0

as n → ∞. Indeed, from (3.15) and (3.19), it follows that

∥xn − Zn∥ ≤ ∥xn − yn∥+ ∥yn − Zn∥ → 0

as n → ∞. Similarly, we can show that xn −Wn → 0.
Our goal is to prove that xn ⇀ x̂

(
≡ limk→∞ PF (S)∩F (T )xk

)
. To this end, it is sufficient

to show that for any subsequence {xni
} of {xn}, there exists a subsequence

{
xnj

}
of {xni

}
such that xnj ⇀ x̂. Let {xni} be a subsequence of {xn}. As {xni} is bounded, there
exists a subsequence

{
xnj

}
of {xni} such that xnj ⇀ p for some p ∈ H . From (3.20), we

have that Znj ⇀ p and Wnj ⇀ p. As S and T are mean-demiclosed (2.11), we obtain
p ∈ F (S) ∩ F (T ). From (2.8), it follows that〈

xnj − PF (S)∩F (T )xnj , PF (S)∩F (T )xnj − p
〉
≥ 0

for all j ∈ N. As xnj
⇀ p and PF (S)∩F (T )xn → x̂, it holds in the limit as j → ∞ that

⟨p− x̂, x̂− p⟩ ≥ 0. Thus, p = x̂. This indicates that xn ⇀ x̂. The proof is thus complete.
□

Setting yn = xn for all n ∈ N in Theorem 3.3, we obtain Theorem 1.1 as a corollary.
Therefore, the iterative schemes (1.4) and (1.5) presented in the Introduction are generated
from Theorem 3.3. In (3.13), the idea using a sequence {yn} that satisfies ∥yn − q∥ ≤
∥xn − q∥ and xn − yn → 0 instead of {xn} is derived from the recent work of Kondo [27].

4. TAKAHASHI–TAKEUCHI–KUBOTA METHOD

This section presents a strong convergence theorem for finding a common fixed point of
two nonlinear mappings. We use the shrinking projection method proposed by Takahashi
et al. [42] together with mean-valued sequences. The basic element of the proof has been
developed in many prior studies, for instance, [16, 21, 26, 44].

For proving theorems in the following sections, we relax a condition pertaining to map-
pings, compared with that in Theorem 3.3. Consider the following setting: Let C be a
nonempty, closed, and convex subset of a real Hilbert space H . Moreover, let S : C → C

with F (S) ̸= ∅ and let {zn} be a bounded sequence in C. Define Zn = 1
n

∑n−1
l=0 Slzn (∈ C).

Following Kondo [21], consider the following condition:

(4.21) Znj → p (strong convergence) =⇒ p ∈ F (S) ,

where
{
Znj

}
is a subsequence of {Zn}. A mean-demiclosed mapping (2.11) satisfies the

condition (4.21), and thus, broad classes of mappings, including nonexpansive mappings,
satisfy this condition (4.21). In the following analysis, quasi-nonexpansive mappings with
the condition (4.21) are considered.

Theorem 4.4. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
S, T : C → C be quasi-nonexpansive mappings that satisfy the condition (4.21). Suppose that
F (S) ∩ F (T ) ̸= ∅. Let {an}, {bn}, and {cn} be sequences of real numbers in the interval [0, 1]
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such that an + bn + cn = 1 for all n ∈ N, limn→∞ anbn > 0, and limn→∞ancn > 0. Let {un}
be a sequence in H such that un → u (∈ H). Define a sequence {xn} in C as follows:

x1 = x ∈ C : given,
C1 = C,

Xn = anyn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn,

Cn+1 = {h ∈ Cn : ∥Xn − h∥ ≤ ∥xn − h∥} ,
xn+1 = PCn+1

un+1

for all n ∈ N, where {yn}, {zn}, and {wn} are sequences in C that satisfy

(4.22) ∥yn − q∥ ≤ ∥xn − q∥ , ∥zn − q∥ ≤ ∥xn − q∥ , ∥wn − q∥ ≤ ∥xn − q∥

for all q ∈ F (S) ∩ F (T ) and n ∈ N and

(4.23) xn − yn → 0

as n → ∞. Then, {xn} converges strongly to an element û in F (S) ∩ F (T ), where û =
PF (S)∩F (T )u.

Proof. In this proof, we use again the notation

Zn =
1

n

n−1∑
l=0

Slzn and Wn =
1

n

n−1∑
l=0

T lwn

for simplicity, where {zn} and {wn} are given. As C is convex, {Zn} and {Wn} are se-
quences in C. In this case, Xn = anyn + bnZn + cnWn (∈ C).

We show that (a) Cn is closed and convex, (b) F (S) ∩ F (T ) ⊂ Cn for all n ∈ N, and (c)
the sequences {xn} , {yn} , {zn} , {wn} , {Xn} in C and {Cn} are properly defined. First,
we consider the case in which n = 1.

(i) Given x1 ∈ C1 (= C), we can choose y1, z1, and w1 ∈ C such that (4.22) and (4.23)
are satisfied for n = 1. For instance, if we set y1 = z1 = w1 = x1, then the condition (4.22)
is fulfilled. With similar settings for all n ∈ N, the condition (4.23) will be satisfied. With
x1, y1, z1, w1 ∈ C, X1 and C2 are defined as follows:

X1 = a1y1 + b1Z1 + c1W1 ∈ C and

C2 = {h ∈ C1 : ∥X1 − h∥ ≤ ∥x1 − h∥} .

As C1 is closed and convex, C2 is also closed and convex. We verify that F (S) ∩ F (T ) ⊂
C2. Let q ∈ F (S) ∩ F (T ) (⊂ C1). It follows from (4.22) that

∥X1 − q∥ = ∥a1y1 + b1Z1 + c1W1 − q∥
= ∥a1y1 + b1z1 + c1w1 − q∥
≤ a1 ∥y1 − q∥+ b1 ∥z1 − q∥+ c1 ∥w1 − q∥
≤ a1 ∥x1 − q∥+ b1 ∥x1 − q∥+ c1 ∥x1 − q∥ = ∥x1 − q∥ ,

which means that q ∈ C2. Therefore, F (S)∩F (T ) ⊂ C2 as claimed. As F (S)∩F (T ) ̸= ∅ is
assumed, we have C2 ̸= ∅. Consequently, the metric projection PC2 exists and x2 = PC2u2

is defined.
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(ii) Given x2 ∈ C2 (⊂ C1 = C), we can choose y2, z2, and w2 ∈ C such that (4.22) and
(4.23) are satisfied for n = 2. Furthermore, X2 and C3 are defined as follows:

X2 = a2y2 + b2Z2 + c2W2 ∈ C and

C3 = {h ∈ C2 : ∥X2 − h∥ ≤ ∥x2 − h∥} .

Using the same reasoning as that in the case of (i), we can verify that C3 is closed and
convex and F (S) ∩ F (T ) ⊂ C3. As F (S) ∩ F (T ) ̸= ∅ is assumed, it holds that C3 ̸= ∅.
Thus, the metric projection PC3

exists and x3 = PC3
u3 is defined.

Repeating the same analysis, we can prove (a), (b), and (c) as claimed.
Define un = PCn

u (∈ Cn). As Cn ⊂ Cn−1 ⊂ · · · ⊂ C1 = C, {un} is a sequence in C. As
un = PCn

u and F (S) ∩ F (T ) ⊂ Cn, it follows that

(4.24) ∥u− un∥ ≤ ∥u− q∥
for all q ∈ F (S) ∩ F (T ) and n ∈ N. This outcome shows that {un} is bounded. Further-
more, as un = PCn

u and un+1 = PCn+1
u ∈ Cn+1 ⊂ Cn, we obtain that

∥u− un∥ ≤ ∥u− un+1∥
for all n ∈ N. This shows that the sequence {∥u− un∥} of real numbers is monotone
increasing. As {un} is bounded, {∥u− un∥} is also bounded. Thus, {∥u− un∥} is conver-
gent.

Subsequently, we demonstrate that {un} is convergent in C. In other words, there exists
u ∈ C such that

(4.25) un → u.

Let m,n ∈ N such that m ≥ n. As un = PCn
u and um = PCm

u ∈ Cm ⊂ Cn, we have from
(2.9) that

∥u− un∥2 + ∥un − um∥2 ≤ ∥u− um∥2 .
As {∥u− un∥} is convergent, it can be stated that un − um → 0 as m,n → ∞. This
indicates that {un} is a Cauchy sequence in C. As C is closed in a real Hilbert space H , it
is complete. Hence, there exists u ∈ C such that un → u as claimed.

Next, observe that {xn} has the same limit point, that is,

(4.26) xn → u.

Indeed, as the metric projection PCn
is nonexpansive and un → u is assumed, it follows

from (4.25) that

∥xn − u∥ ≤ ∥xn − un∥+ ∥un − u∥
= ∥PCnun − PCnu∥+ ∥un − u∥
≤ ∥un − u∥+ ∥un − u∥ → 0

as claimed. As {xn} is convergent, it is bounded.
We prove that

(4.27) xn −Xn → 0.

Indeed, as {xn} is convergent, it holds that xn − xn+1 → 0. From xn+1 = PCn+1
un+1 ∈

Cn+1, it follows that ∥Xn − xn+1∥ ≤ ∥xn − xn+1∥ → 0. Therefore, we have

∥xn −Xn∥ ≤ ∥xn − xn+1∥+ ∥xn+1 −Xn∥ → 0

as claimed. As {xn} is bounded, {Xn} is also bounded according to (4.27).
Now, note that

(4.28) ∥Zn − q∥ ≤ ∥zn − q∥ and ∥Wn − q∥ ≤ ∥wn − q∥



828 Atsumasa Kondo

for all q ∈ F (S) ∩ F (T ) and n ∈ N. These inequalities in (4.28) can be proved in the same
manner as (3.17), given that S and T are quasi-nonexpansive. Using (4.28), we demon-
strate that

(4.29) yn − Zn → 0 and yn −Wn → 0.

Here, we arbitrarily select q ∈ F (S) ∩ F (T ). From (2.6), (4.28), and (4.22), it follows that

∥Xn − q∥2

= ∥an (yn − q) + bn (Zn − q) + cn (Wn − q)∥2

= an ∥yn − q∥2 + bn ∥Zn − q∥2 + cn ∥Wn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

≤ an ∥yn − q∥2 + bn ∥zn − q∥2 + cn ∥wn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

≤ an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

= ∥xn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2 .

As bncn ∥Zn −Wn∥2 ≥ 0, it follows that

anbn ∥yn − Zn∥2 + ancn ∥yn −Wn∥2

≤ ∥xn − q∥2 − ∥Xn − q∥2

≤ (∥xn − q∥+ ∥Xn − q∥) |∥xn − q∥ − ∥Xn − q∥|
≤ (∥xn − q∥+ ∥Xn − q∥) ∥xn −Xn∥ .

As {xn} and {Xn} are bounded, we obtain (4.29) from (4.27) and the assumptions limn→∞
anbn > 0 and limn→∞ancn > 0.

Next, we show that

(4.30) xn − Zn → 0 and xn −Wn → 0.

Indeed, from (4.23) and (4.29), it holds that

∥xn − Zn∥ ≤ ∥xn − yn∥+ ∥yn − Zn∥ → 0.

The second part in (4.30) can be similarly verified.
From (4.26) and (4.30), we have Zn → u and Wn → u. Therefore, from (4.21), we obtain

u ∈ F (S) ∩ F (T ).
Finally, we demonstrate that

u
(
= lim

n→∞
un = lim

n→∞
xn

)
= û

(
= PF (S)∩F (T )u

)
.

As u ∈ F (S)∩F (T ) and û = PF (S)∩F (T )u, it is sufficient to show that ∥u− u∥ ≤ ∥u− û∥.
As û ∈ F (S) ∩ F (T ), from (4.24), it holds that ∥u− un∥ ≤ ∥u− û∥. From (4.25), we
obtain ∥u− u∥ ≤ ∥u− û∥. Thus, we have that u = û. Given (4.26), it can be stated that
xn → û (= u). This completes the proof. □

Setting yn = xn in Theorem 4.4 yields the following corollary, corresponding to Theo-
rem 4 in the work of Kondo [26]:
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Corollary 4.1 ([26]). Let C be a nonempty, closed, and convex subset of H . Let S, T : C → C be
quasi-nonexpansive mappings that satisfy the condition (4.21). Suppose that F (S) ∩ F (T ) ̸= ∅.
Let {an}, {bn}, and {cn} be sequences of real numbers in [0, 1] such that an + bn + cn = 1 for
all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Let {un} be a sequence in H such that
un → u (∈ H). Define a sequence {xn} in C as follows:

x1 = x ∈ C : given,
C1 = C,

Xn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn,

Cn+1 = {h ∈ Cn : ∥Xn − h∥ ≤ ∥xn − h∥} ,
xn+1 = PCn+1

un+1

for all n ∈ N, where {zn} and {wn} are sequences in C that satisfy

(4.31) ∥zn − q∥ ≤ ∥xn − q∥ and ∥wn − q∥ ≤ ∥xn − q∥

for all q ∈ F (S) ∩ F (T ) and n ∈ N. Then, {xn} converges strongly to an element û in F (S) ∩
F (T ), where û = PF (S)∩F (T )u.

From this corollary, various types of iterative schemes can be generated, as discussed
in Section 5 in Kondo [26].

5. MARTINEZ-YANES AND XU METHOD

This section presents a strong convergence theorem for finding a common fixed point
of nonlinear mappings. We use the Martinez-Yanes and Xu iterative method (see Theorem
2.1 in [34]) alongside the shrinking projection method [42] and mean-valued sequences.
To the authors’ best knowledge, this is the first attempt to apply the iterative scheme gen-
erating method to the Martinez-Yanes and Xu method. The fundamentals of the following
proof have been improved in many studies; see, for instance, [1, 23, 25].

Theorem 5.5. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
S, T : C → C be quasi-nonexpansive mappings that satisfy the condition (4.21). Suppose that
F (S) ∩ F (T ) ̸= ∅. Let {an}, {bn}, and {cn} be sequences of real numbers in the interval [0, 1]
such that an + bn + cn = 1 for all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Let {un} be
a sequence in H such that un → u (∈ H). Define a sequence {xn} in C as follows:

x1 = x ∈ C : given,
C1 = C,

Xn = anyn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn,

Cn+1 =
{
h ∈ Cn : ∥Xn − h∥2 ≤ an ∥yn − h∥2 + bn ∥zn − h∥2 + cn ∥wn − h∥2

}
,

xn+1 = PCn+1
un+1

for all n ∈ N, where {yn}, {zn}, and {wn} are sequences in C that satisfy

(5.32) ∥yn − q∥ ≤ ∥xn − q∥ , ∥zn − q∥ ≤ ∥xn − q∥ , ∥wn − q∥ ≤ ∥xn − q∥

for all q ∈ F (S) ∩ F (T ) and n ∈ N and

(5.33) xn − yn → 0, xn − zn → 0, xn − wn → 0
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as n → ∞. Then, {xn} converges strongly to an element û in F (S) ∩ F (T ), where û =
PF (S)∩F (T )u.

Remark 5.1. In the definition of Cn+1,

∥Xn − h∥2 ≤ an ∥yn − h∥2 + bn ∥zn − h∥2 + cn ∥wn − h∥2

⇐⇒ 0 ≤ an ∥yn∥2 + bn ∥zn∥2 + cn ∥wn∥2 − ∥Xn∥2(5.34)
−2 ⟨ayn + bzn + cwn −Xn, h⟩

⇐⇒ ∥Xn − h∥2 ≤ ∥yn − h∥2 + bn

(
∥zn∥2 − ∥yn∥2 + 2 ⟨zn − yn, h⟩

)
(5.35)

+cn

(
∥wn∥2 − ∥yn∥2 + 2 ⟨wn − yn, h⟩

)
.

From (5.35), we can see that Theorem 5.5 corresponds to the Martinez-Yanes and Xu type.
According to (2.10) and (5.34), the set Cn+1 is closed and convex if Cn is closed and
convex, given Xn, yn, zn, wn ∈ C and an, bn, cn ∈ R.

Proof. We again use the notation

Zn =
1

n

n−1∑
l=0

Slzn and Wn =
1

n

n−1∑
l=0

T lwn,

where {zn} and {wn} are given. The mean-valued sequences {Zn} and {Wn} lie in C as
C is convex. Then, we have Xn = anyn + bnZn + cnWn (∈ C).

We prove that (a) Cn is closed and convex, (b) F (S) ∩ F (T ) ⊂ Cn for all n ∈ N, and (c)
the sequences {xn}, {yn}, {zn}, {wn}, and {Xn} in C and {Cn} are properly defined. We
start with the case of n = 1.

(i) Given x1 ∈ C1 (= C), we can choose y1, z1, and w1 ∈ C such that (5.32) and (5.33) are
satisfied for n = 1. For example, setting y1 = z1 = w1 = x1, the condition (5.32) is satisfied.
Furthermore, by choosing yn, zn, wn in a similar manner for all n ∈ N, the condition (5.33)
will be satisfied. With x1, y1, z1, w1 ∈ C, X1 and C2 are defined as follows:

X1 = a1y1 + b1Z1 + c1W1

= a1y1 + b1z1 + c1w1 ∈ C and

C2 =
{
h ∈ C1 : ∥X1 − h∥2 ≤ a1 ∥y1 − h∥2 + b1 ∥z1 − h∥2 + c1 ∥w1 − h∥2

}
.

From (2.10) and (5.34), we see that C2 is closed and convex as C1 is closed and convex.
Observe that F (S)∩F (T ) ⊂ C2. Choose q ∈ F (S)∩F (T ) (⊂ C1) arbitrarily. Using (2.7),
we have

∥X1 − q∥2 = ∥a1y1 + b1z1 + c1w1 − q∥2

= ∥a1 (y1 − q) + b1 (z1 − q) + c1 (w1 − q)∥2

≤ a1 ∥y1 − q∥2 + b1 ∥z1 − q∥2 + c1 ∥w1 − q∥2 .

This indicates that q ∈ C2. Thus, F (S) ∩ F (T ) ⊂ C2 as claimed. As F (S) ∩ F (T ) ̸= ∅ is
assumed, C2 is also nonempty. Consequently, the metric projection PC2 exists and x2 =
PC2u2 is defined.
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(ii) Given x2 ∈ C2 (⊂ C1 = C), we can choose y2, z2, and w2 ∈ C such that (5.32) and
(5.33) are satisfied for n = 2. With these elements, X2 and C3 are defined as follows:

X2 = a2y2 + b2Z2 + c2W2

= a2y2 + b2
1

2
(z2 + Sz2) + c2

1

2
(w2 + Tw2) ∈ C and

C3 =
{
h ∈ C2 : ∥X2 − h∥2 ≤ a2 ∥y2 − h∥2 + b2 ∥z2 − h∥2 + c2 ∥w2 − h∥2

}
.

Using the same reasoning as in case (i), we can verify that C3 is closed and convex and
F (S) ∩ F (T ) ⊂ C3. As F (S) ∩ F (T ) ̸= ∅ is assumed, C3 ̸= ∅. Thus, the metric projection
PC3

exists and x3 = PC3
u3 is defined.

Repeating the same analysis, we can prove (a), (b), and (c).
Define un = PCn

u ∈ Cn. As the sequence {Cn} of sets is shrinking, that is, Cn ⊂
Cn−1 ⊂ · · · ⊂ C1 = C, {un} is a sequence in C. Observe that

(5.36) ∥u− un∥ ≤ ∥u− q∥

for all q ∈ F (S) ∩ F (T ) and n ∈ N. This follows from the definition un = PCn
u and the

fact that q ∈ F (S) ∩ F (T ) ⊂ Cn. Then, from (5.36), {un} is bounded.
Next, we show that

(5.37) ∥u− un∥ ≤ ∥u− un+1∥

for all n ∈ N. As un = PCnu and un+1 = PCn+1u ∈ Cn+1 ⊂ Cn, the inequality (5.37)
follows, which means that {∥u− un∥} is monotone increasing. As {un} is bounded,
{∥u− un∥} is a convergent sequence in R.

We claim that the sequence {un} is convergent in C, that is, there exists u ∈ C such that

(5.38) un → u.

To prove this, we verify that {un} is a Cauchy sequence in C. Let m,n ∈ N such that
m ≥ n. As un = PCn

u and um = PCm
u ∈ Cm ⊂ Cn, using (2.9), we have

∥u− un∥2 + ∥un − um∥2 ≤ ∥u− um∥2 .

Given that {∥u− un∥} is convergent, it follows that un − um → 0 as m,n → ∞. Thus,
{un} is a Cauchy sequence in C. As C is closed in H , it is complete. Consequently, there
exists u ∈ C such that un → u as claimed.

Next, we demonstrate that {xn} has the same limit point, that is,

(5.39) xn → u.

As the metric projection is nonexpansive, from (5.38) and the assumption un → u, it
follows that

∥xn − u∥ ≤ ∥xn − un∥+ ∥un − u∥
= ∥PCn

un − PCn
u∥+ ∥un − u∥

≤ ∥un − u∥+ ∥un − u∥ → 0.

Thus, (5.39) holds true as claimed. This implies that {xn} is bounded. From (5.32), {yn},
{zn}, and {wn} are also bounded.

As {xn} is convergent, the following expression holds:

(5.40) xn − xn+1 → 0.

Next, observe that

(5.41) Xn − xn+1 → 0.
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Indeed, as xn+1 = PCn+1
un+1 ∈ Cn+1, we have

∥Xn − xn+1∥2(5.42)

≤ an ∥yn − xn+1∥2 + bn ∥zn − xn+1∥2 + cn ∥wn − xn+1∥2

≤ an (∥yn − xn∥+ ∥xn − xn+1∥)2 + bn (∥zn − xn∥+ ∥xn − xn+1∥)2

+cn (∥wn − xn∥+ ∥xn − xn+1∥)2 .
From (5.33) and (5.40), we obtain Xn − xn+1 → 0 as claimed. From (5.40) and (5.41), we
have xn −Xn → 0. As {xn} is bounded, {Xn} is also bounded.

Note that

(5.43) ∥Zn − q∥ ≤ ∥zn − q∥ and ∥Wn − q∥ ≤ ∥wn − q∥
for all q ∈ F (S) ∩ F (T ) and n ∈ N. The inequalities in (5.43) can be proved in a similar
manner as (3.17). We aim to demonstrate that

(5.44) yn − Zn → 0 and yn −Wn → 0.

Let q ∈ F (S) ∩ F (T ). From (2.6), (5.43), and (5.32), we obtain the following expressions:

∥Xn − q∥2

= ∥an (yn − q) + bn (Zn − q) + cn (Wn − q)∥2

= an ∥yn − q∥2 + bn ∥Zn − q∥2 + cn ∥Wn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

≤ an ∥yn − q∥2 + bn ∥zn − q∥2 + cn ∥wn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

≤ an ∥xn − q∥2 + bn ∥xn − q∥2 + cn ∥xn − q∥2

−anbn ∥xyn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2

= ∥xn − q∥2

−anbn ∥yn − Zn∥2 − bncn ∥Zn −Wn∥2 − cnan ∥Wn − yn∥2 .

As bncn ∥Zn −Wn∥2 ≥ 0, we have

anbn ∥yn − Zn∥2 + ancn ∥yn −Wn∥2

≤ ∥xn − q∥2 − ∥Xn − q∥2

≤ (∥xn − q∥+ ∥Xn − q∥) |∥xn − q∥ − ∥Xn − q∥|
≤ (∥xn − q∥+ ∥Xn − q∥) ∥xn −Xn∥ .

Recall that {xn} and {Xn} are bounded and xn−Xn → 0. Using the hypotheses limn→∞anbn >
0 and limn→∞ancn > 0, we obtain in the limit as n → ∞ that yn−Zn → 0 and yn−Wn → 0
as claimed.

Then,

(5.45) xn − Zn → 0 and xn −Wn → 0.

In fact, using (5.33) and (5.44), the following expression can be derived:

∥xn − Zn∥ ≤ ∥xn − yn∥+ ∥yn − Zn∥ → 0.

The second part in (5.45) can be similarly obtained.
From (5.39) and (5.45), it follows that Zn → u and Wn → u. As S and T satisfy the

condition (4.21), we obtain u ∈ F (S) ∩ F (T ).
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Our goal is to prove that xn → û. From (5.39), it is sufficient to show that

u
(
= lim

n→∞
un = lim

n→∞
xn

)
= û

(
= PF (S)∩F (T )u

)
.

Applying (5.36) for q = û ∈ F (S) ∩ F (T ), we have ∥u− un∥ ≤ ∥u− û∥ for all n ∈ N.
From (5.38), we obtain ∥u− u∥ ≤ ∥u− û∥. As u ∈ F (S)∩F (T ) and û = PF (S)∩F (T )u, this
indicates that u = û. According to (5.39), we can state that xn → û. This completes the
proof. □

Remark 5.2. We compare Theorems 5.5 and 4.4 focusing on conditions (5.33) and (4.23). In
Theorem 5.5, the additional conditions xn − zn → 0 and xn − wn → 0 are required. These
assumptions are used in (5.42) when taking the limit as n → ∞.

From Theorem 5.5, the following corollary is obtained:

Corollary 5.2 ([25]). Let C be a nonempty, closed, and convex subset of H . Let S, T : C → C be
quasi-nonexpansive mappings satisfying the condition (4.21). Suppose that F (S) ∩ F (T ) ̸= ∅.
Let {λn}, {µn}, {νn}, {ξn}, and {θn} be sequences of real numbers in the interval [0, 1] such that
λn +µn + νn + ξn + θn = 1 for all n ∈ N and λn → 1. Let {λ′

n}, {µ′
n}, {ν′n}, {ξ′n}, and {θ′n} be

sequences of real numbers in [0, 1] such that λ′
n+µ′

n+ν′n+ξ′n+θ′n = 1 for all n ∈ N and λ′
n → 1.

Let {an}, {bn}, and {cn} be sequences of real numbers in [0, 1] such that an + bn + cn = 1 for
all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Let {un} be a sequence in H such that
un → u (∈ H). Define a sequence {xn} in C as follows:

x1 = x ∈ C : given,(5.46)
C1 = C,

zn = λnxn + µnSxn + νnTxn + ξn
1

n

n−1∑
l=0

Slxn + θn
1

n

n−1∑
l=0

T lxn,

wn = λ′
nxn + µ′

nSxn + ν′nTxn + ξ′n
1

n

n−1∑
l=0

Slxn + θ′n
1

n

n−1∑
l=0

T lxn,

Xn = anxn + bn
1

n

n−1∑
l=0

Slzn + cn
1

n

n−1∑
l=0

T lwn,

Cn+1 =
{
h ∈ Cn : ∥Xn − h∥2 ≤ an ∥xn − h∥2 + bn ∥zn − h∥2 + cn ∥wn − h∥2

}
,

xn+1 = PCn+1
un+1

for all n ∈ N. Then, {xn} converges strongly to an element û in F (S) ∩ F (T ), where û =
PF (S)∩F (T )u.

Proof. First, we ascertain that (a) Cn is closed and convex, (b) F (S) ∩ F (T ) ⊂ Cn for all
n ∈ N, and (c) the sequences {xn} , {zn} , {wn} , {Xn} in C and {Cn} are defined properly.
To this end, we first consider the case of n = 1.

(i) Given x1 ∈ C1 (= C), the elements z1, w1, and X1 in C and the set C2 (⊂ C1) are
defined following the rule (5.46). As C1 is closed and convex, C2 is also closed and convex,
as discussed in Theorem 5.5. We prove that F (S) ∩ F (T ) ⊂ C2. Arbitrarily select q ∈
F (S) ∩ F (T ) (⊂ C1). Then, it follows from (2.7) that

∥X1 − q∥2 = ∥a1 (x1 − q) + b1 (z1 − q) + c1 (w1 − q)∥2

≤ a1 ∥x1 − q∥2 + b1 ∥z1 − q∥2 + c1 ∥w1 − q∥2 ,
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which implies that q ∈ C2. Therefore, F (S)∩F (T ) ⊂ C2 as claimed. From the assumption
F (S) ∩ F (T ) ̸= ∅, we have C2 ̸= ∅. From this, the metric projection PC2

is guaranteed to
exist and x2 = PC2

u2 is defined.
(ii) Given x2 ∈ C2 (⊂ C1 = C), z2, w2, X2 (∈ C) and C3 (⊂ C2 ⊂ C1) are defined by the

iterative rule (5.46). We can verify that C3 is closed and convex and F (S) ∩ F (T ) ⊂ C3.
As F (S) ∩ F (T ) ̸= ∅ is assumed, it follows that C3 ̸= ∅. Thus, the metric projection PC3

exists and x3 = PC3
u3 is defined.

By repeating this reasoning, we can ascertain that (a), (b), and (c) hold true as claimed.
From Theorem 5.5, it is sufficient to demonstrate that ∥zn − q∥ ≤ ∥xn − q∥ and ∥wn − q∥ ≤

∥xn − q∥ for all q ∈ F (S) ∩ F (T ) and n ∈ N, with xn − zn → 0 and xn − wn → 0. First,
let us prove that ∥zn − q∥ ≤ ∥xn − q∥ and ∥wn − q∥ ≤ ∥xn − q∥. Choose q ∈ F (S)∩ F (T )
and n ∈ N. As S and T are quasi-nonexpansive, we can prove that

(5.47)

∥∥∥∥∥ 1n
n−1∑
l=0

Slxn − q

∥∥∥∥∥ ≤ ∥xn − q∥ and

∥∥∥∥∥ 1n
n−1∑
l=0

T lxn − q

∥∥∥∥∥ ≤ ∥xn − q∥

in the same way as (3.17). Using these inequalities yields

∥zn − q∥

=

∥∥∥∥∥λnxn + µnSxn + νnTxn + ξn
1

n

n−1∑
l=0

Slxn + θn
1

n

n−1∑
l=0

T lxn − q

∥∥∥∥∥
≤ λn ∥xn − q∥+ µn ∥Sxn − q∥+ νn ∥Txn − q∥

+ξn

∥∥∥∥∥ 1n
n−1∑
l=0

Slxn − q

∥∥∥∥∥+ θn

∥∥∥∥∥ 1n
n−1∑
l=0

T lxn − q

∥∥∥∥∥
≤ ∥xn − q∥ .

Similarly, the expression ∥wn − q∥ ≤ ∥xn − q∥ can be proved.
Define un ≡ PCn

u ∈ Cn. Then, there exists u ∈ C such that un → u, as indicated
in (5.38) in the proof of Theorem 5.5. Furthermore, {xn} also converge to u; see (5.39).
Thus, {xn} is bounded. As S and T are quasi-nonexpansive, {Sxn} and {Txn} are also
bounded. Indeed, for q ∈ F (S), it holds that

∥Sxn∥ ≤ ∥Sxn − q∥+ ∥q∥(5.48)

≤ ∥xn − q∥+ ∥q∥ .

As {xn} is bounded, {Sxn} is also bounded. Similarly, {Txn} is also bounded. Fur-
thermore, the inequalities in (5.47) imply that

{
1
n

∑n−1
l=0 Slxn

}
and

{
1
n

∑n−1
l=0 T lxn

}
are

bounded.
We demonstrate that xn − zn → 0 and xn − wn → 0. As λn → 1, it follows that

µn, νn, ξn, θn → 0. Therefore,

∥xn − zn∥

=

∥∥∥∥∥xn −

(
λnxn + µnSxn + νnTxn + ξn

1

n

n−1∑
l=0

Slxn + θn
1

n

n−1∑
l=0

T lxn

)∥∥∥∥∥
≤ (1− λn) ∥xn∥+ µn ∥Sxn∥+ νn ∥Txn∥+ ξn

∥∥∥∥∥ 1n
n−1∑
l=0

Slxn

∥∥∥∥∥+ θn

∥∥∥∥∥ 1n
n−1∑
l=0

T lxn

∥∥∥∥∥
→ 0.
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As λ′
n → 1, we obtain that xn − wn → 0 as claimed. From Theorem 5.5, the desired result

follows. □

6. DERIVATIVE RESULTS

This section presents two convergence results as applications of Theorem 5.5. Although
Theorems 3.3 and 4.4 can also be applied, we exclusively refer to Theorem 5.5 to save
space. First, the following corollary is obtained:

Corollary 6.3. Let C be a nonempty, closed, and convex subset of a real Hilbert space H . Let
S, T : C → C be quasi-nonexpansive mappings satisfying the condition (4.21). Suppose that
F (S) ∩ F (T ) ̸= ∅. Let {an}, {bn}, and {cn} be sequences of real numbers in the interval [0, 1]
such that an + bn + cn = 1 for all n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Let {λn}
and {µn} be sequences of real numbers in [0, 1] such that λn → 1 and µn → 1. Let {un} be a
sequence in H such that un → u (∈ H). Define a sequence {xn} in C as follows:

x1 = x ∈ C : given,(6.49)
C1 = C,

zn = µnxn + (1− µn)Txn,

yn = λnzn + (1− λn)Szn,

Xn = anyn + bn
1

n

n−1∑
l=0

Slyn + cn
1

n

n−1∑
l=0

T lzn,

Cn+1 =
{
h ∈ Cn : ∥Xn − h∥2 ≤ (an + bn) ∥yn − h∥2 + cn ∥zn − h∥2

}
,

xn+1 = PCn+1un+1

for all n ∈ N. Then, {xn} converges strongly to an element û in F (S) ∩ F (T ), where û =
PF (S)∩F (T )u.

Proof. First, we verify that (a) Cn is closed and convex, (b) F (S)∩F (T ) ⊂ Cn for all n ∈ N,
and (c) the sequences {xn} , {zn} , {yn} , {Xn} , {Cn} are properly defined. We begin with
the case of n = 1.

(i) Given x1 ∈ C1 (= C), the elements z1, y1, X1 ∈ C and set C2 (⊂ C1) are defined
following the iterative rule outlined in (6.49). Note that

∥X1 − h∥2 ≤ (a1 + b1) ∥y1 − h∥2 + c1 ∥z1 − h∥2(6.50)

⇐⇒ 0 ≤ (a1 + b1) ∥y1∥2 + c1 ∥z1∥2 − ∥X1∥2 − 2 ⟨(a1 + b1) y1 + c1z1 −X1, h⟩ .

As C1 is closed and convex, from (2.10) and (6.50), C2 is also closed and convex. We
demonstrate that F (S) ∩ F (T ) ⊂ C2. Let q ∈ F (S) ∩ F (T ) (⊂ C1). It follows from (2.7)
that

∥X1 − q∥2 = ∥a1 (y1 − q) + b1 (y1 − q) + c1 (z1 − q)∥2

≤ a1 ∥y1 − q∥2 + b1 ∥y1 − q∥2 + c1 ∥z1 − q∥2

= (a1 + b1) ∥y1 − q∥2 + c1 ∥z1 − q∥2 ,

which implies that q ∈ C2. Hence, F (S) ∩ F (T ) ⊂ C2 as claimed. From the assumption
F (S) ∩ F (T ) ̸= ∅, we have C2 ̸= ∅. Consequently, the metric projection PC2

exists and
x2 = PC2

u2 is defined.
(ii) Given x2 ∈ C2 (⊂ C1 = C), z2, y2, X2 (∈ C) and C3 (⊂ C2 ⊂ C1) are defined by the

iterative rule (6.49). We can thus verify that C3 is closed and convex. Furthermore, F (S)∩
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F (T ) ⊂ C3, given that S and T are quasi-nonexpansive. As F (S) ∩ F (T ) ̸= ∅, C3 is also
nonempty. Thus, the metric projection PC3

exists and x3 = PC3
u3 is defined.

Through a similar analysis, we can prove (a), (b), and (c).

From Theorem 5.5, it is sufficient to demonstrate that ∥yn − q∥ ≤ ∥xn − q∥ and ∥zn − q∥ ≤
∥xn − q∥ for all q ∈ F (S) ∩ F (T ) and n ∈ N, with xn − yn → 0 and xn − zn → 0.

First, observe that ∥yn − q∥ ≤ ∥xn − q∥ and ∥zn − q∥ ≤ ∥xn − q∥. Let q ∈ F (S) ∩ F (T )
and n ∈ N. As T is quasi-nonexpansive, the following expression can be derived:

∥zn − q∥ = ∥µn (xn − q) + (1− µn) (Txn − q)∥(6.51)

≤ µn ∥xn − q∥+ (1− µn) ∥Txn − q∥
≤ µn ∥xn − q∥+ (1− µn) ∥xn − q∥ = ∥xn − q∥ .

Using this, we obtain

∥yn − q∥ = ∥λn (zn − q) + (1− λn) (Szn − q)∥
≤ λn ∥zn − q∥+ (1− λn) ∥Szn − q∥
≤ λn ∥zn − q∥+ (1− λn) ∥zn − q∥
= ∥zn − q∥ ≤ ∥xn − q∥

as claimed.
Define un = PCn

u ∈ Cn. Similar to the proof of Theorem 5.5, we can show that there
exists u ∈ C such that un → u and xn → u, as indicated in (5.38) and (5.39) in the
proof of Theorem 5.5. As {xn} is convergent, it is bounded. Moreover, as T is quasi-
nonexpansive, {Txn} is also bounded, as indicated in (5.48) in the proof of Corollary
5.2. Furthermore, from (6.51), {zn} is bounded. Therefore, {Szn} is also bounded as S is
quasi-nonexpansive.

We show that xn − yn → 0 and xn − zn → 0. As µn → 1, it follows that

∥xn − zn∥ = ∥xn − (µnxn + (1− µn)Txn)∥(6.52)

≤ (1− µn) ∥xn − Txn∥ → 0.

Using λn → 1 and (6.52), we have

∥xn − yn∥ = ∥xn − (λnzn + (1− λn)Szn)∥
= ∥λn (xn − zn) + (1− λn) (xn − Szn)∥
≤ λn ∥xn − zn∥+ (1− λn) ∥xn − Szn∥ → 0

as claimed. From Theorem 5.5, the desired result follows. □

The iterative scheme in Corollary 6.3 is a three-step type. For three-step iterative meth-
ods, see Noor [37], Dashputre and Diwan [11], Phuengrattana and Suantai [38], and
Chugh et al. [10]. Set µn = 1 for all n ∈ N in Corollary 6.3. Then, zn = xn, and the
following iterative scheme can be obtained:

yn = λnxn + (1− λn)Sxn,

Xn = anyn + bn
1

n

n−1∑
l=0

Slyn + cn
1

n

n−1∑
l=0

T lxn,

Cn+1 =
{
h ∈ Cn : ∥Xn − h∥2 ≤ (an + bn) ∥yn − h∥2 + cn ∥xn − h∥2

}
,

xn+1 = PCn+1
un+1,
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where x1 = x ∈ C is given and C1 = C. This scheme represents a two-step iterative
scheme. The next corollary also provides a two-step iterative method to approximate a
common fixed point:

Corollary 6.4. Let C be a nonempty, closed, and convex subset of H . Let S, T : C → C be
quasi-nonexpansive mappings satisfying the condition (4.21). Suppose that F (S) ∩ F (T ) ̸= ∅.
Let {an}, {bn}, and {cn} be sequences of real numbers in [0, 1] such that an + bn + cn = 1 for all
n ∈ N, limn→∞anbn > 0, and limn→∞ancn > 0. Let {λn}, {µn}, {νn}, and {ξn} be sequences
of real numbers in [0, 1] such that λn + µn + νn + ξn = 1 for all n ∈ N and λn → 1. Let {un} be
a sequence in H such that un → u (∈ H). Define a sequence {xn} in C as follows:

x1 = x ∈ C : given,(6.53)
C1 = C,

yn = λnxn + µnSxn + νnTxn + ξnT
2xn,

Xn = anyn + bn
1

n

n−1∑
l=0

Slxn + cn
1

n

n−1∑
l=0

T lxn,

Cn+1 =
{
h ∈ Cn : ∥Xn − h∥2 ≤ an ∥yn − h∥2 + (bn + cn) ∥xn − h∥2

}
,

xn+1 = PCn+1
un+1

for all n ∈ N. Then, {xn} converges strongly to an element û in F (S) ∩ F (T ), where û =
PF (S)∩F (T )u.

Proof. At the outset, we verify that (a) Cn is closed and convex, (b) F (S)∩F (T ) ⊂ Cn for
all n ∈ N, and (c) the sequences {xn}, {yn}, {Xn}, and {Cn} are properly defined.

(i) Given x1 ∈ C1 (= C), the elements y1 and X1 in C and the set C2 (⊂ C1) are defined
following the iterative rule (6.53). In the definition of C2,

∥X1 − h∥2 ≤ a1 ∥y1 − h∥2 + (b1 + c1) ∥x1 − h∥2

⇐⇒ 0 ≤ a1 ∥y1∥2 + (b1 + c1) ∥x1∥2 − ∥X1∥2 − 2 ⟨a1y1 + (b1 + c1)x1 −X1, h⟩ .

From (2.10), C2 is closed and convex as C1 is closed and convex. We demonstrate that
F (S) ∩ F (T ) ⊂ C2. Let q ∈ F (S) ∩ F (T ) (⊂ C1). It follows from (2.7) that

∥X1 − q∥2 = ∥a1 (y1 − q) + b1 (x1 − q) + c1 (x1 − q)∥2

≤ a1 ∥y1 − q∥2 + b1 ∥x1 − q∥2 + c1 ∥x1 − q∥2

= a1 ∥y1 − q∥2 + (b1 + c1) ∥x1 − q∥2 .

This means that q ∈ C2. Thus, we obtain F (S) ∩ F (T ) ⊂ C2 as claimed. From the
assumption F (S)∩ F (T ) ̸= ∅, C2 is also nonempty. We can thus conclude that the metric
projection PC2

exists and x2 = PC2
u2 is defined.

(ii) Given x2 ∈ C2 (⊂ C1), two elements y2 and X2 in C and the set C3 (⊂ C2 ⊂ C1)
are defined by the rule (6.53). We can prove that C3 is closed and convex and F (S) ∩
F (T ) ⊂ C3. According to the assumption F (S)∩F (T ) ̸= ∅, C3 ̸= ∅. Therefore, the metric
projection PC3

exists and x3 = PC3
u3 is defined.

Through a similar analysis, we can ascertain that (a), (b), and (c) hold true.

Our aim is to prove that ∥yn − q∥ ≤ ∥xn − q∥ for all q ∈ F (S) ∩ F (T ) and n ∈ N
and that xn − yn → 0. Choose q ∈ F (S) ∩ F (T ) and n ∈ N arbitrarily. As S and T are
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quasi-nonexpansive, it holds that

∥yn − q∥
=

∥∥λnxn + µnSxn + νnTxn + ξnT
2xn − q

∥∥
≤ λn ∥xn − q∥+ µn ∥Sxn − q∥+ νn ∥Txn − q∥+ ξn

∥∥T 2xn − q
∥∥

≤ λn ∥xn − q∥+ µn ∥xn − q∥+ νn ∥xn − q∥+ ξn ∥xn − q∥
= ∥xn − q∥ .

Therefore, the part ∥yn − q∥ ≤ ∥xn − q∥ is proved.
Define un = PCn

u ∈ Cn. Similar to the proof of Theorem 5.5, we can show that there
exists u ∈ C such that un → u and xn → u; see (5.38) and (5.39). As {xn} is convergent,
it is bounded. As S and T are quasi-nonexpansive, {Sxn} and {Txn} are also bounded.
Furthermore,

{
T 2xn

}
is also bounded. Indeed, as T is quasi-nonexpansive,∥∥T 2xn

∥∥ ≤
∥∥T 2xn − q

∥∥+ ∥q∥
≤ ∥Txn − q∥+ ∥q∥
≤ ∥xn − q∥+ ∥q∥ .

As {xn} is bounded,
{
T 2xn

}
is also bounded as claimed.

We demonstrate that xn − yn → 0. As λn → 1, it follows that µn, νn, ξn → 0. Therefore,

∥xn − yn∥ =
∥∥xn −

(
λnxn + µnSxn + νnTxn + ξnT

2xn

)∥∥
≤ (1− λn) ∥xn∥+ µn ∥Sxn∥+ νn ∥Txn∥+ ξn

∥∥T 2xn

∥∥→ 0.

From Theorem 5.5, we obtain the desired result. □

For sequences like yn = λnxn + µnSxn + νnTxn + ξnT
2xn, see Maruyama et al. [35],

Kondo and Takahashi [28], and Singh et al. [40].

7. CONCLUDING REMARKS

In this study, we investigated iterative scheme generating methods using mean-valued
sequences for finding common fixed points of nonlinear mappings. Our contributions
include enhancements to several results from prior research. This method is applied for
the first time to the Martinez-Yanes and Xu approximation method. The proposed method
can generate various types of iterative schemes, including two- and three-step iterative
schemes.

The key observations and remarks are as follows: First, our analysis highlights the
differences between the shrinking projection method of Takahashi, Takeuchi, and Kubota
(Theorem 4.4) and the Martinez-Yanes and Xu (Theorem 5.5). The required conditions dif-
fer slightly depending on the technical circumstances of the proofs; see Remark 5.2. Sec-
ond, Nakajo and Takahashi’s CQ method can be extended in a similar manner, although
this study focuses on the shrinking projection method and Mann type method. Third,
our emphasis is on quasi-nonexpansive and mean-demiclosed mappings. This class of
mappings contains more general types of mappings than nonexpansive mappings. For
further details regarding this aspect, readers may refer to the Appendix in the work of
Kondo [26]. Finally, although this article addresses common fixed point theorems for two
nonlinear mappings, the methods can be extended to scenarios involving finitely many
mappings.
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