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ABSTRACT. Conjugate gradient methods are often popular for solving nonlinear optimization problems. In
this paper, we discuss the spectral conjugate gradient (SCG) method, an effective numerical method that gen-
eralizes the conjugate gradient method (CG) for solving a large-scale unconstrained optimization problem. In-
tegrating the methods of Fletcher and Reeves (FR), and Polak and Ribiere (PR), we introduce a new stochastic
spectral conjugate gradient algorithm with variance reduction, and we show that it is linearly convergent with
the Fletcher and Reeves method for smooth and strongly convex functions. Thus, we illustrate experimentally
that our algorithm converges quicker than its companions for the four learning models considered. Moreover,
likewise the CG method, it only stores the last gradient vector so that it would be easy to apply and handle
some complex problems considered as in machine learning. In the experiment, we also show that our algorithm
overtakes generalization performance (AUC) over their corresponding companions through the four models
considered that might be nonsmooth or nonconvex.

1. INTRODUCTION

Consider the following finite sum optimization problem which has been largely dis-
cussed for solving most machine learning problems;

(1.1) min
w

ϕ(w) =

n∑
i=1

ϕi(w)

where w ∈ Rd, and ϕi : Rd → R, i = 1, ...,m which indeed plays an indispensable role
in estimating the best parameter w that fits the training data in their respective i-th sam-
ple. It can be considered as the most extensively used approach to solve some of the well
known machine learning problems; classification[14], Regression[35], Clustering[17], and
Ranking[16, 15], One of the most popular and ancient algorithms used for minimizing
(1.1) in many large-scale machine learning problems is known as the stochastic gradient
descent (SGD)[4] and its variants [7, 27]. A lot has been done on this algorithmic approach
such as the Adam method[20], that evaluates the adaptive learning rate for their corre-
sponding parameters, SGD with momentum[31] is the other well known method which
can be used to train both recurrent and deep neural networks by considering a random
initialization and a relatively slow increase of the momentum parameter. However, the
method SGD basically relies on the initialization and decay strategy of the learning rate.

Due to randomness, SGD often introduces a variance that drops down its rate of con-
vergence. To alleviate this problem, Roux et al.[28] introduced the stochastic average gra-
dient for effective reduction of the variances in SGD. The stochastic dual coordinate ascent
(SDCA) was introduced by Shalev-Shwartz and Zhang [30] for the training of some linear
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prediction problems with a favorable linear rate of convergence. However, these meth-
ods require the storage of all gradients which make them impractical for a large complex
problem. By reducing the variance of the gradient estimate Johnson and Zhang [19] pro-
posed a stochastic variance reduced gradient (SVRG) to accelerate the convergence of the
corresponding first-order stochastic method. Moreover, some works have also been indi-
cated as a promising line of research by stochasticizing the second order quasi-Newton
method through L-BFGS algorithm. Besides, stochastic quasi-Newton method for the
non-convex stochastic optimization was studied by Xiao Wang et al. [33]. To determine
the descent direction and approximate the curvature of the objective function, Mokhtari
and Ribeiro made use of stochastic gradients instead of the deterministic gradients [24].
The stochastic variants of L-BFGS was introduced by Moritz et al [25]who integrated the
idea of variance reduction. In a limited memory, Gower et al [11] introduced a stochastic
block BFGS update with SVRG approach. Nevertheless, computing the product H∇f (H
is the Hessian) within a limited memory may become restrictive for large scale machine
learning problems due to the fact that the stochastic quasi-Newton methods often require
m vector pairs to evaluate it.

The FR method[9], an extension of a linearly CG method to their corresponding non-
linear functions, was first discussed by Fletcher and Reeves. Another variant of the CG
method called PR method was introduced by Polak and Ribiere (PR)[26] and was further
modified by Gilbert and Nocedal showing that under a sufficient descent condition, the
modified PR method βPR+

t = max{βPR
t , 0} with Wolfe-Powell linear search is globally

convergent. In a situation where the direction is violated, restarting is typically essen-
tial upon which the PR method, Hestenes and Stiefel [12] method, and Liu and Storey[23]
methods became the most efficient and suitable CG methods for practical implementation.
Even though the convergence of the conjugate descent [6], Dai and Yuan [5] method, and
the FR method which are indeed poor in their numerical results. The spectral conjugate
gradient method (SCG) is remarkably and essentially considered as a generalization of
the CG method for solving large-scale unconstrained optimization problems. It was first
proposed by Birgin and Martinez([3]) and a lot of improvement with excellent theoretical
and numerical results have been proposed, see references there in [2, 22, 13, 34, 10, 32, 1].
Recently, Xiao-Bo et al [18] and Caixia Kou et al [21] proposed variants of stochastic CG
methods which overtake some advantages one over the other in terms of calculating and
handling the variance of the stochastic gradient in charge. Particularly, inspired by the
work of Xiao-Bo et al called the stochastic conjugate gradient algorithm with variance
reduction(CGVR), in this paper therefore, we present a novel scheme that generalizes
their works by introducing the appropriate spectral parameter that best suits for searching
the direction of descent at each iteration.The proposed algorithms, namely, the stochastic
Spectral Fletcher-Reeves Conjugate Gradient Variance Reduction (SFRCGVR) and the sto-
chastic Spectral Polyak and Ribiere Conjugate Gradient Variance Reduction (SPRCGVR)
have the following comparative advantages:

• Both converge rapidly within a few iterations due to the concept of SVRG and
CGVR.

• The presence of the spectral parameter would make our algorithms converge bet-
ter than their counterparts because the spectral CG converges faster than the gen-
eral CG.

• The FR variance reduced spectral CG method (SFRCGVR) as well as PR variance
reduced spectral CG method (SPRCGVR) work well because the parameters are
insensitive to the data.
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• Unlike the quasi-Newton variants that often store a set of vector pairs, it only
stores the last gradient vector similar to CG

Hence, the contributions of our paper are to propose an extended stochastic variant of the
CG method with variance reduction on the subsamples where computation of the gra-
dient and the Wolfe line search are consequently evaluated. Furthermore, we show the
linear convergence of SFRCGVR for strongly convex and smooth functions with the FR
method. We also demonstrate a series of experiments on five large scale data sets with
four classic learning models which can be convex, nonconvex, or nonsmooth. The exper-
iment shows that our algorithms converge quicker than their counterparts. In particular
its AUC (area under the curve) performance with the sqhinge loss model is comparable
to that of the LIBLINEAR solver with a remarkable improvement in computational effi-
ciency.

In the composition of this paper, we discuss the proposed algorithms and their frame-
works briefly in section II and III respectively. We show the convergence analysis of our
algorithms (SFRCGVR/SPRCGVR) in the next section and show its linear convergence
for a strongly convex and smooth function. Finally, we present and compare the experi-
mental results of our algorithms along with their counterparts in section IV, and conclude
some results and related figures in the last section as well.

2. STOCHASTIC SPECTRAL CONJUGATE GRADIENT WITH VARIANCE REDUCTION

Even though SVRG uses a gradient estimate using the variance reduction approach
to accelerate the convergence of SGD, it is very sensitive to the learning rate. However,
SLBFGS often requires M vector pairs to determine H∇f and hence it is often compu-
tationally expensive. Stochastic conjugate gradient with Variance Reduction algorithm
(CGVR) was proposed to alleviate the above problems (see Algorithm 1). There are two
loops that need to be considered in Algorithm 1, the outer and the inner loops. The data
points are chosen randomly in the inner loop to estimate a gradient with the variance
reduction strategy. Motivated by CGVR, we introduce a new scheme for the choice of
the spectral and conjugate parameters to improve the performance and computational
efficiency of the algorithm.

3. MAIN RESULT

The stochastic variance reduced gradient algorithm (SVRG) shows better convergence
property than SGD due to the reduction of variance in the gradient estimate; however,
it is sensitive to the learning rate as well. We incorporate the spectral CG algorithm and
SVRG to get our algorithm. Two loops including the outer and inner loops are considered
in Algorithm 2. Likewise CGVR, we compute the full gradient vk in the outer loop and
retain x0 to initiate w after every m SGD iteration. The variance reduced gradient gt+1

is computed on a randomly generated set Qk,t ⊂ {1, 2, ..., n} in the t-th loop of the k-th
iteration, i.e.,

(3.2) gt+1 = ∇ϕQk,t
(xt+1)−∇ϕQk,t

(x0) + vk,

where gt+1 corresponds to ∇ϕ(xt+1) in CG, and ∇ϕQk,t
(.) is calculated from the definition

of the subsampled function

(3.3) ϕQ(w) =
1

|Q|
∑
w∈Q

ϕi(w).



852 Seifu Endris Yimer, Poom Kumam, Parin Chaipunya

Algorithm 1 : Stochastic Spectral Conjugate Gradient with Variance Reduction

Initialize: w0 and l0 = ∇ϕ(w0)
for k = 1, 2, ...P − 1 do

vk = ∇ϕ(wk)
x0 = wk

g0 = lk
d0 = −g0

for t = 0, ...,m− 1 do
randomly pick a minibatch Qk,t ⊂ {1, 2, ..., n}
find αt using the line search algorithm to optimize:

minα ϕQk,t
(xt + αdt)

xt+1 = xt + αtdt
Compute gt+1 = ∇ϕQk,t

(xt+1)−∇ϕQk,t
(x0) + vk

find β and θ in the following two options
Option I:

βPR
t+1 =

gT
t+1(gt+1−gt)

∥gt∥2 , θt+1 =
dT
t yt

∥gt∥2

Option II:
βFR
t+1 = ∥gt+1∥2

∥gt∥2 , θt+1 =
dT
t yt

∥gt∥2 ,

dt+1 = −θt+1gt+1 + βt+1dt
end for
lk+1 = gm
Option I: wk+1 = xm

Option II: wk+1 = xt for randomly chosen t ∈ {0, 1, 2, ...,m− 1}
end for

A line search algorithm is called to optimize its step size so that the iterations in the inner
loop can be easily computed using a precise formulations of the parameters in the classical
spectral conjugate gradient algorithms, as can be seen in Algorithm 2. Two options are
considered to choose wk+1 (see Option I and Option II in Algorithm 2).
The PR method is a significant CG method with a parameter βt+1 defined as

(3.4) βPR
t+1 =

gTt+1(gt+1 − gt)

∥gt∥2
.

FR methods use another approach to compute βt+1 as follows

(3.5) βFR
t+1 =

∥gt+1∥2

∥gt∥2
.

Particularly, these parameters together with the spectral parameter

(3.6) θt+1 =
dTt yt
∥gt∥2

, where yt = gt+1 − gt

are used to compute the direction(descent) towards the solution in context see [8] under
a certain conditions. In our experiment, we used the trick βt+1 = 0 to restart the iteration
with the steepest descent step and computed the parameter β as in the PR+ method,

(3.7) βPR+
t+1 = max

{
βPR
t+1, 0

}
.

and restarting periodically will enhance the algorithm to refresh. Notice that the step size
αt satisfying the following Wolf type conditions[8] will ensure that the search direction dt
is descent.

(3.8) ϕ(xt)− ϕ(xt + αtdt) ≥ ρα2
t ∥dt∥2,
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(3.9) g(xt + αtdt)
T dt ≥ −2σαt∥dt∥2,

where 0 < ρ < σ < 1.
In fact, the ideal optimal step length can be obtained using exact line search method;

(3.10) min
α

ϕQk,t
(xt + αdt).

4. CONVERGENCE ANALYSIS

Let us define
πϕ(x) = ϕ(x)− ϕ(w∗), ϕt = ϕ(xt),∇ϕt = ∇ϕ(xt)

Let’s see the convergence of our algorithm with a Fletcher-Reeves parameter βt update
(3.5)(Option II). In this paper, we frequently use βt to denote βFR

t unless stated, otherwise.
Based on the assumptions in[8], we have the following Wolfe type line search to ensure
the convergence of nonlinear CG methods with inexact line search

(4.11) ϕ(xt)− ϕ(xt + αtdt) ≥ ρα2
t ∥dt∥2

(4.12) g(xt + αtdt)
T dt ≥ −2σαt∥dt∥2

which in turn implies

(4.13) (2σ + L)αt∥dt∥2 ≥ −gTt dt,

where 0 < ρ < σ < 1 and L is a Lipschitz constant.
Our analysis uses the following assumptions.

Assumption 1
For a twice continuously differentiable function ϕi, there are positive constants γ < Γ
such that

(4.14) γI ≤ ∇2ϕQ(x) ≤ ΓI, ∀x ∈ Rd

where Q ⊂ {1, 2, ..., n}
Assumption 2
There is a constant µ < 1, such that

(4.15) βFR
t =

∥gt∥2

∥gt−1∥2
≤ µ.

Assumption 3
Algorithm 2 is consistent with a step length αt ∈ [a, b] such that b > a > 0.

As can be seen in Lemma 5 and 6 of [25], we need to estimate the lower and upper bounds
of ∥∇ϕ(x)∥ and E[∥gt∥2] respectively. Note that

(4.16) ∇ϕ(xt) = E[gt].

Lemma 4.1. Let the function ϕ be γ− strongly convex and continuously differentiable. Suppose
a minimizer w∗ is unique, then, we get

(4.17) ∥∇ϕ(x)∥2 ≥ 2γ
(
ϕ(x)− ϕ(w∗)

)
, ∀x ∈ Rd

Lemma 4.2. Let gt = ∇ϕQk,t
(xt) − ∇ϕQk,t

(wk) + vk and vk = ∇ϕ(wk) be the stochastic
variance reduced gradient. Suppose w∗ be the unique minimizer of ϕ. Then, we have

(4.18) E[∥gt∥2] ≤ 4Γ
(
πϕ(xt) + πϕ(wk)

)
,
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where
πϕ(x) = ϕ(x)− ϕ(w∗).

Lemma 4.3. Suppose the direction dt is given [8], then we have

(4.19) gTt dt = −∥gt∥2.

Thus, we obtain the main results as follows.

Theorem 4.1. Let assumptions 2 and 3 hold to algorithm 1. Then , we have

(4.20) E[∥dt∥2] ≤ φ(t)E[∥g0∥2],

where

(4.21) φ(t) =
M

1− µ
µt − M + µ− 1

1− µ
µ2t and M =

2σ + L

2aργ

Proof. According to Assumption 2, we have

(4.22) E[∥gt∥2] ≤ µE[∥gt−1∥2].

and a bounded E[∥dt∥2],

E[∥dt∥2] = E[∥ − θtgt + βtdt−1∥2]
= E[θ2t ∥gt∥2 − 2θtβtg

T
t dt−1 + β2

t ∥dt−1∥2]
= E[θ2t ∥gt∥2 − 2θt∥gt∥2

(
θt − 1

)
+ β2

t ∥dt−1∥2]
= E[β2

t ∥dt−1∥2 + 2θt∥gt∥2 − θ2t ∥gt∥2]
= E[β2

t ∥dt−1∥2 − ∥gt∥2(θ2t − 2θt)]

= E[β2
t ∥dt−1∥2 − ∥gt∥2(θt − 1)2 + ∥gt∥2]

≤ E[β2
t ∥dt−1∥2 + ∥gt∥2]

= E[β2
t ∥dt−1∥2 − gTt dt]

≤ E[β2
t ∥dt−1∥2 + (2σ + L)αt∥dt∥2]

= E[β2
t ∥dt−1∥2 +

(2σ + L)

ραt
ρα2

t ∥dt∥2]

≤ E[β2
t ∥dt−1∥2 +

(2σ + L)

ραt

(
ϕ(xt)−

ϕ(xt + αtdt)
)
]

≤ E[β2
t ∥dt−1∥2 +

(2σ + L)

ραt

1

2γ
∥gt∥2]

= E[β2
t ∥dt−1∥2 +M∥gt∥2]

= β2
tE[∥dt−1∥2] +ME[∥gt∥2].(4.23)

Thus,

(4.24) E[∥dt∥2] ≤ µ2E[∥dt−1∥2] +MµE[∥gt−1∥2].

where

M =
2σ + L

2aργ
.

To begin with the k-th iteration, we have

(4.25) d0 = −g0.
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Furthermore, we unfold (4.22) inductively as

(4.26) E[∥gt∥2] ≤ µtE[∥g0∥2].

According to (4.24) and (4.26), we get the following

E[∥dt∥2] ≤ MµE[∥gt−1∥2] + µ2E[∥dt−1∥2]
≤ Mµ

(
E[∥gt−1∥2] + µ2E[∥gt−2∥2]

+ ...+ (µ2)t−1E[∥g0∥2]
)
+ (µ2)tE[∥d0∥2]

= Mµ
(
µt−1E[∥g0∥2] + (µ2)µt−2E[∥g0∥2]

+ ...+ (µ2)t−1E[∥g0∥2]
)
+ (µ2)tE[∥g0∥2]

= MµE[∥g0∥2]
t−1∑
j=0

(µ2)jµt−1−j + (µ2)tE[∥g0∥2]

= MµtE[∥g0∥2]
t−1∑
j=0

µj + (µ2)tE[∥g0∥2]

=

(
Mµt 1− µt

1− µ
+ µ2t

)
E[∥g0∥2]

=

(
M

1− µ
µt − M + µ− 1

1− µ
µ2t

)
E[∥g0∥2]

= φ(t)E[∥g0∥2],(4.27)

where

(4.28) φ(t) =
M

1− µ
µt − M + µ− 1

1− µ
µ2t and M =

2σ + L

2aργ
.

□

Theorem 4.2. Suppose that w∗ be the unique minimizer of ϕ under the assumptions 1,2 and 3 ,
then we have

(4.29) E[ϕ(wk)− ϕ(w∗)] ≤ ξkE[ϕ(w0)− ϕ(w∗)],∀k ≥ 0,

where

(4.30) ξ =
4Γ2b2(M + 1) + (1− µ)2

2aγm(1− µ)2
< 1

is its rate of convergence, and thus for a very large m to hold

(4.31) m ≥ 4Γ2b2(M + 1) + (1− µ)2

2aγ(1− µ)2
> 0.

Proof. From Lipscitz continuity of ∇ϕ and Assumption 2, we get

(4.32) ϕ(xt+1) ≤ ϕ(xt) +∇ϕ(xt)
T (xt+1 − xt) +

Γ

2
∥xt+1 − xt∥2.

Note that d0 = −g0, then we have ∇ϕT
0 E[d0] = −∥∇ϕ0∥2. Since dt = −θtgt + βtdt−1 for

t ≥ 0 and the random variables gt and dt−1 are independent, with (4.16) and (4.19), we
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have

∇ϕTE[dt] = E[gt]E[dt]

= E[gTt dt]
= − E∥gt∥2

= − ∥∇ϕt∥2.(4.33)

So, we can take expectation on both sides of (4.32)

E[ϕt+1] ≤ ϕt +∇ϕT
t E[(xt+1 − xt)] +

Γ

2
E[∥xt+1 − xt∥2]

= ϕt + αt∇ϕT
t E[dt] +

Γ

2
α2
tE[∥dt∥2]

= ϕt − αt∥∇ϕt∥2 +
Γ

2
α2
tE[∥dt∥2]

≤ ϕt − a∥∇ϕt∥2 +
Γ

2
b2φ(t)E[∥d0∥2]

≤ ϕt − a∥∇ϕt∥2 +
Γ

2
b2φ(t).4Γ(πϕ(x0) + πϕ(wk))

≤ ϕt − 2aγπϕ(xt) + τφ(t)πϕ(wk),(4.34)

where

τ = 4Γ2b2 and φ(t) =
M

1− µ
µt − M + µ− 1

1− µ
µ2t.

A telescoping sum over t = 0, 1, 2, ...,m− 1 gives

E[ϕm] ≤ E[ϕ0]− 2aγ

(m−1∑
t=0

E[πϕ(xt)]

)

+ τE[πϕ(wk)]

m−1∑
t=0

φ(t).(4.35)

Computing
∑m−1

t=0 φ(t), we get

m−1∑
t=0

φ(t) =

m−1∑
t=0

(
M

1− µ
µt − M + µ− 1

1− µ
µ2t

)
=

M

1− µ

(
1− µm

1− µ

)
− M + µ− 1

1− µ

(
1− µ2m

1− µ2

)
≤

(
Mµ

(1 + µ)(1− µ)2
+

1

1− µ2

)
(1− µ2m)

≤
(

Mµ

1 + µ
+ 1

)
1− µ2m

(1− µ)2

≤ M + 1

(1− µ)2
.(4.36)
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Then from (4.35), we have

0 ≤ E[ϕ0]− E[ϕm]− 2aγmE[πϕ(wk+1)]

+ τ
M + 1

(1− µ)2
E[πϕ(wk)](4.37)

≤ E[ϕ(wk)− ϕ(w∗)]− 2aγmE[πϕ(wk+1)]

+ τ
M + 1

(1− µ)2
E[πϕ(wk)](4.38)

= E[πϕ(wk)]− 2aγmE[πϕ(wk+1)]

+ τ
M + 1

(1− µ)2
E[πϕ(wk)](4.39)

=

(
1 +

τ(M + 1)

(1− µ)2

)
E[πϕ(wk)]− 2aγmE[πϕ(wk+1)].(4.40)

Moreover, we have

(4.41) E[πϕ(wk+1)] ≤ ξE[πϕ(wk)],

where

(4.42) ξ =
4Γ2b2(M + 1) + (1− µ)2

2aγm(1− µ)2
.

Letting ξ < 1, we have

(4.43) m ≥ 4Γ2b2(M + 1) + (1− µ)2

2aγ(1− µ)2
> 0.

□

Thus, our algorithm SFRCGVR converges linearly for a sufficiently large m.

5. NUMERICAL EXAMPLES

Here, we present the comparison of our algorithms SFRCGVR and SPRCGVR with
SGD, CG,SVRG, SLBFGS which were implemented in C++ along with the armadillo lin-
ear algebra library[29] and Intel MKL. In the experiment, our proposed algorithms SFR-
CGVR/SPRCGVR show a better performance on some of the well known learning mod-
els, which might be indeed non-differentiable convex or non convex models. Ridge re-
gression, logistic regression,regularized hinge and sqhinge losses are some of the widely
used learning models that we considered in the implementation of our algorithm for a
binary classification of five large scale datasets described in Tab. 1 from the LIBSVM web-
site. In the preprocessing stage, we scaled up each feature values in the range of [-1,+1]
for all dimensions using the max-min scaler. The entire dataset were used to minimize
the function values of the four learning models for the convergence of our algorithm. For
the generalization of our algorithm, we randomly consider one-third of the entire dataset
for testing, one-fifth for validation and the remaining for training, that can be used for
all algorithms. Having sought the optimal parameter from the candidate set, we set the
best trained model using the optimal parameter selected to estimate the AUC scores on
the test set.In the implementation of our algorithm, we estimate the gradient ∇f(x) and

https://software.intel.com/en-us/mkl
https://www.csie.ntu.edu.tw/cjlin/libsvmtools/data sets/
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TABLE 1. Experimental Datasets

Dataset n d

a9a 32,561 123
covtype 581,012 54
ijcnn1 49,990 22
w8a 49,749 300

SUSY 5,000,000 18

Hessian ∇2f(x) with a small constant ϵ = 0.0001 using numerical methods. However, S-
LBFGS computes the Hessian and those classical algorithms CG, SGD, SVRG, and CGVR
compute the gradient as well.

5.1. Parameter Selection. In our algorithms, we basically consider two main parameters
in terms of the number of iterations in both the inner loop m and the outer loop T. We
considered the five datasets in the experiment so that the AUC measures is reported after
25 outer loops, i.e., T = 25. We initialize a uniformly distributed identical random seed
vector w0 over the interval [0, 1]d, and we particularly consider the size of the sample
points |Qk,t| to be

√
n for SFRCGVR, SPRCGVR and SLBFGS, to compute the gradient

and the Hessian matrix. In SLBFGS, we set M = 10 and L = 10 for memory size and the
Hessian update interval, respectively. Besides, we also set ρ = 0.0001 and σ = 0.1 for CG,
SFRCGVR and SPRCGVR. Due to momentum, SGD dampens oscillations and accelerated
in a certain direction, where the coefficient of the momentum is often set to 0.9. Moreover,
we particularly set three different constant step sizes 0.001, 0.0001, 0.00001 for SVRG, SGD
and SLBFGS.

In the implementation, we observe that SFRCGVR rapidly close to the optimal value
with few inner loops that indeed gradually decreases as m increases. Hence, SFRCGVR
is not sensitive to the parameter m that demands a few inner loops to converge rapidly.
However, two algorithms SLBFGS and SVRG reduce the losses a little bit as m increases
with an appropriate learning rate. The running time for all algorithms obviously increases
as m increases but it varies with the learning rate for SLBFGS and SVRG algorithms. De-
spite the fact that our algorithm SFRCGVR as well as SPRCGVR are comparable with
those algorithms considered under a similar parameter m, it would still have a great ben-
efit of time efficiency due to the few iterations it requires in the inner loop to converge
rapidly.

5.2. Results and Discussion. We make some comparisons for the convergence of the al-
gorithms by setting the number of inner loop iteration m = 50 on five large scale datasets.
Having set the optimal learning rate from 0.001, 0.0001, 0.00001 on the validation set, we
correspondingly chose the best model along with these optimal learning rates for SGD,
SLBFGS and SVRG.

Fig. 1 considers the x-axis as the number of iterations in the outer loop and y-axis
to be the logarithmic values of the loss functions. As can be seen in the convergence of
the five algorithms with γ = 0.0001, CG generally converges faster than SGD, SVRG,
and SLBFGS but SFRCGVR is the fastest of all these algorithms on almost all of the four
models.However, due to the unsuitability of the learning rates, SGD shows instability
on the ridge model as there is a large fluctuation in the loss value. Because SVRG and
SLBFGS are sensitive to the learning rates, SLBFGS does not perform better than SVRG.
Furthermore, we see that our algorithms converge rapidly in sqhinge model compared to
their counterparts.
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FIGURE 1. Convergence of seven algorithms on the given loss functions
with γ = 0.0001

Fig.2 shows that the average AUC scores of CG, SGD, SLBFGS, SVRG, CGVR, SFR-
CGVR and SPRCGVR on five random splits of datasets for each model to make analysis
on the generalization of SFRCGVR and SPRCGVR. Overall, either of the algorithms SFR-

FIGURE 2. AUC scores’ comparison on SFRCGVR and SPRCGVR with
the corresponding other five algorithms
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CGVR or SPRCGVR essentially outperform their counterparts on five large scale data
sets. In particular, SLBFGS and SVRG have nearly the same generalization performance
but the classical CG algorithm remains outperform these two algorithms. However, the
CGVR algorithm outperforms better in general except our SFRCGVR/SPRCGVR algo-
rithms, which have some subtle differences with it. Thus, we can infer that our algorithm
SFRCGVR/SPRCGVR with an optimal value achieved has a better generalization perfor-
mance in general with a suitable regularization settings.

6. CONCLUSION

This paper presented a new spectral conjugate gradient algorithm based on the re-
duction of variance with a linear convergence property. The proposed algorithm SFR-
CGVR/SPRCGVR required a few iteration to converge quickly when compared to SVRG
and it needs less memory space while running the algorithm, similar to CG which stores
the last gradient vector only, unlike the SLBFGS that stores M vector pairs. Thus, it out-
performs and shows better performance on four well known learning models. More-
over, SFRCGVR shows a comparable generalization performance with that of LIBLINEAR
solver in optimizing a particular sqhinge loss which results in improving computational
efficiency for large scale machine learning problems.
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