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A new type of cyclic iterated function systems via enriched
cyclic weak contractions

RIZWAN ANJUM1 AND MIHAELA ANCUŢA CHIRA2

ABSTRACT. The purpose of this article is to introduce a new class of enriched cyclic contractions in Banach
spaces, called enriched cyclic weak contractions. As an application, we define the corresponding cyclic iterated
function system composed of this new class of enriched cyclic contractions. Some examples are also presented
to validate the theoretical results.

1. INTRODUCTION

The term ”fractal” was first introduced by Mandelbrot [17] in 1975, marking the be-
ginning of a completely new field of study that bridges chaos theory and mathematical
analysis. Hutchinson [8] established the theory about fractals in connection with fixed
point theory. The term ”iterated function system” (IFS) became well-known due to Barns-
ley (see [2, 3]). Since iterated function systems are providing one of the main techniques
used to create fractals, the problem of extending the concept of these systems was taken
into consideration by several authors (see, for example [11, 15, 20, 24, 27, 28, 29] and ref-
erences therein).

Several researchers have obtained many fixed point results and their applications over
the past 60 years (see [4, 5, 7]). In 2003, Kirk et al. [14] explored fixed points for maps that
satisfy cyclic contraction conditions, attracting many researchers, who obtained a variety
of fixed point results [5, 9, 10, 13, 16, 20, 22, 24, 25, 26].

Following the idea, Kirk et al. [14], Pasupathi et al. [29] discussed the concept of a cyclic
iterated function system with cyclic contraction. Pasupathi et al. also constructed a cyclic
ϕ IFS in [20], and a cyclic Meir-Keeler IFS in [21]. In 2022, Abbas et al. [1] investigated the
IFS consisting of generalized enriched cyclic contraction mappings, and Ullah et al. [11]
studied the cyclic weak ϕ IFS with weak ψ contraction mappings.

This current paper has two main goals. The first is to define a new class of mappings,
called enriched cyclic weak contractions, which is also novel in the literature on fixed
point theory, and to demonstrate the existence of their fixed points and their iterative
approximation. The second goal is to study a cyclic iterated function system associated to
enriched cyclic weak contractions.

2. ENRICHED CYCLIC WEAK CONTRACTIONS

Throughout the paper, by N and R we will denote the set of all natural numbers and
the set of all real numbers, respectively. (X, ∥·∥) denotes a normed space over the field R,
while {Bj : j = 1, 2, 3, . . . , p} denotes a finite family of nonempty closed subsets of the
normed space X, where p ∈ N.
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Let

Ω = {ϕ : X → R: ϕ(x) ̸= 0 ∀ x ∈ X}, 0 = {ψ : X → R: ψ(x) ̸= −1 ∀ x ∈ X}

and let Θ be the family of functions ζ : [0,∞) → [0,∞) which are continuous and non-
decreasing with ζ(t) > 0, for t ∈ (0,∞), and satisfy ζ(0) = 0.

In [23], the following concept was introduced. Let T : X → X and a fixed ϕ ∈ Ω. The
average mapping of T is Tϕ : X → X defined by

(2.0.1) Tϕ(x) = (1− ϕ(x))x+ ϕ(x)Tx, ∀ x ∈ X.

A finite collection {Bj : j = 1, 2, 3, . . . , p} is called a cyclic representation of
⋃p
j=1Bj with

respect to T (see [25]) if

T (B1) ⊆ B2, . . . , T (Bp−1) ⊆ Bp, and T (Bp) ⊆ B1.

The class of cyclic weak contractions was proposed and investigated by Karapınar [12]
in the setting of metric spaces. Now we introduce the concept of cyclic weak contraction
in the framework of normed spaces.

Definition 2.1. Let (X, ∥·∥) be a normed space and {Bj : j = 1, 2, 3, . . . , p} a finite collections of
nonempty subsets of X . A mapping T :

⋃p
j=1Bj →

⋃p
j=1Bj is called a cyclic weak contraction

if
(1) {Bj : j = 1, 2, 3, . . . , p} is a cyclic representation of

⋃p
j=1Bj with respect to T ;

(2) there exists ζ ∈ Θ, such that for 1 ≤ j ≤ p we have

(2.0.2) ∥Tx− Ty∥ ≤ ∥x− y∥ − ζ (∥x− y∥) , for all x ∈ Bj , y ∈ Bj+1,

where Bp+1 = B1.

Observe that this class of mappings includes many well-known contractive conditions
in the current literature [13]. It was proved that a cyclic weak contraction mapping defined
on a complete metric space has a unique fixed point (see Theorem 6 in [13]).

We introduce the following class of mappings.

Definition 2.2. Let (X, ∥·∥) be a normed space and {Bj : j = 1, 2, 3, . . . , p} a finite collections
of nonempty closed subsets of X . A mapping T :

⋃p
j=1Bj → X is called enriched cyclic weak

contractions (ECWC) if it satisfies the following conditions:
(1) there exists ψ ∈ 0 such that, for ϕ(x) = 1

1+ψ(x) , ∀x ∈ X , we have ϕ ∈ Ω, and the
collection {Bj : j = 1, 2, 3, . . . , p} is a cyclic representation of

⋃p
j=1Bj with respect to

Tϕ,
(2) there exists ζ ∈ Θ, such that for all x ∈ Bj , y ∈ Bj+1 for 1 ≤ j ≤ p, with Bp+1 = B1,

we have

(2.0.3)
∥∥∥∥xψ(x) + Tx

1 + ψ(x)
− yψ(y) + Ty

1 + ψ(y)

∥∥∥∥ ≤ ∥x− y∥ − ζ (∥x− y∥) .

To highlight the involvement of ϕ, ψ and ζ in (2.0.3), we shall also call T a (ϕ, ψ, ζ)-
ECWC.

Enriched cyclic weak contractions are preferred over weak cyclic contractions for four
reasons:

(1) They are non self-mappings, while weak cyclic contractions are self-mappings.
(2) Every T weak cyclic contraction is (ϕ, ψ, ζ) -ECWC. Indeed, if we take ϕ(x) = 1

for all x ∈ X , then Tϕ becomes T , and then {Bj : j = 1, 2, 3, . . . , p} is a cyclic
representation of

⋃p
j=1Bj with respect to Tϕ ≡ T . Moreover, the condition (2.0.2)

for cyclic weak contraction T satisfies condition (2.0.3) for ψ(x) = 0, ∀x ∈ X .
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(3) In the case of cyclic weak contraction the first condition is given for mapping T,
that is, {Bj : j = 1, 2, 3, . . . , p} is a cyclic representation of

⋃p
j=1Bj with respect to

T, while in the case of enriched cyclic weak contraction this condition is replaced
by some averaged operator Tϕ as given by (2.0.1). The example 2.1 demonstrates
this argument: there exist a class of mapping such that {Bj : j = 1, 2, 3, . . . , p} is
not a cyclic representation of

⋃p
j=1Bj with respect to T but there exists ϕ ∈ Ω such

that {Bj : j = 1, 2, 3, . . . , p} is a cyclic representation of
⋃p
j=1Bj with respect to

Tϕ.
(4) There is a class of mappings T that satisfy all of the conditions of enriched cyclic

weak contraction but are not weak cyclic contractions. This argument is demon-
strated by the following Example 2.1.

As a conclusion, the class of enriched cyclic weak contractions is larger than the class of
cyclic weak contractions.

Example 2.1. Let X = R with the usual metric. Suppose B1 = [−1, 0] = B3 and B2 = [0, 1] =

B4. Define T : ∪4
j=1Bj → X such that Tx = −x

(
5 + 4 |x|

3

)
for all x ∈ ∪4

j=1Bj .

It is easy to check that {Bj : j = 1, . . . , 4} is not a cyclic representation of
⋃4
j=1Bj with respect

to T. Indeed, if x = −1 ∈ B1, then T (−1) = 3 ̸∈ B2.
Let ψ : X → R defined by ψ(x) = 1 + |x| , for all x ∈ X . It is clear that ψ ∈ 0. Then

ϕ : X → R is defined by ϕ(x) =
1

2 + |x|
, for all x ∈ X, therefore ϕ ∈ Ω. Note that the average

mapping is

Tϕ(x) = (1− ϕ(x))x+ ϕ(x)Tx

=

(
1− 1

2 + |x|

)
x+

(
1

2 + |x|

)(
−x

(
5 + 4 |x|

3

))
=

(
1 + |x|
2 + |x|

)
x+

−x (5 + 4 |x|)
3 (2 + |x|)

=
3x(1 + |x|)− 5x− 4x |x|

3 (2 + |x|)
=

−2x− x |x|
3 (2 + |x|)

=
−x
3
.

Therefore, it follows that Tϕ(x) =
−x
3
, for all x ∈

⋃4
j=1Bj . It is clear that {B1, B2, B3, B4} is a

cyclic representation of ∪4
j=1Bj with respect to Tϕ.

Furthermore, if ζ : [0,∞) → [0,∞) is defined by ζ(t) = t
2 , for all t ∈ [0,∞) then ζ ∈ Θ.

Hence T is a (ϕ, ψ, ζ)-ECWC.

With ϕ(x) =
1

1 + ψ(x)
, for all x ∈ X with ϕ ∈ Ω the (ϕ, ψ, ζ)-ECWC condition (2.0.3)

becomes∣∣∣∣ϕ(x)(( 1

ϕ(x)
− 1

)
x+ Tx

)
− ϕ(y)

((
1

ϕ(y)
− 1

)
y + Ty

)∣∣∣∣ ≤ |x− y| − ζ (|x− y|) ,∣∣∣∣ϕ(x) (1− ϕ(x))x+ ϕ(x)Tx

ϕ(x)
− ϕ(y)

(1− ϕ(y))y + ϕ(y)Ty

ϕ(y)

∣∣∣∣ ≤ |x− y| − ζ (|x− y|)

which can be written in an equivalent form as

(2.0.4) |Tϕx− Tϕy| ≤ |x− y| − ζ (|x− y|) .

This holds for all x ∈ Bj , y ∈ Bj+1 for 1 ≤ j ≤ 4 , where B5 = B1.
On the other hand, if T would be a cyclic weak contraction, then for ζ(t) = t

2 , ∀t ∈ [0,∞), the
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contractive condition (2.0.2) becomes∣∣∣∣−x(5 + 4 |x|
3

)
+ y

(
5 + 4 |y|

3

)∣∣∣∣ ≤ |x− y|
2

,

which for x = 0 ∈ B1 and y ∈ B2 leads to a contradiction.

Before proving the main result, we need the following lemma.

Lemma 2.1. [23] Let T : X → X and Tϕ be given in (2.0.1). Then for any ϕ ∈ Ω, we have

(2.0.5) F (T ) = {x ∈ X : Tx = x} = {x ∈ X : Tϕx = x} = F (Tϕ).

Proof. The proof is obvious. □

We start with the following result.

Theorem 2.1. Let (X, ∥·∥) be a normed space and {Bj : j = 1, 2, 3, . . . , p} a finite collection of
nonempty closed subsets of X . If T :

⋃p
j=1Bj → X is a (ϕ, ψ, ζ)−ECWC, then T has a unique

fixed point x∗ ∈
⋂p
j=1Bj .

Proof. Let ψ ∈ 0 such that if we take ϕ(x) =
1

1 + ψ(x)
, ∀x ∈ X we have ϕ ∈ Ω. Moreover

the collection {Bj : j = 1, 2, 3, . . . , p} is cyclic representation of
⋃p
j=1Bj with respect to

Tϕ. From the condition (2.0.3) we obtain∥∥∥∥ϕ(x)(( 1

ϕ(x)
− 1

)
x+ Tx

)
− ϕ(y)

((
1

ϕ(y)
− 1

)
y + Ty

)∥∥∥∥ ≤ ∥x− y∥ − ζ (∥x− y∥) ,∥∥∥∥ϕ(x) (1− ϕ(x))x+ ϕ(x)Tx

ϕ(x)
− ϕ(y)

(1− ϕ(y))y + ϕ(y)Ty

ϕ(y)

∥∥∥∥ ≤ ∥x− y∥ − ζ (∥x− y∥)

which can be written in an equivalent form as

(2.0.6) ∥Tϕx− Tϕy∥ ≤ ∥x− y∥ − ζ (∥x− y∥) ,
for all x ∈ Bj , y ∈ Bj+1 with 1 ≤ j ≤ p where Bp+1 = B1.
Let x0 ∈

⋃p
j=1Bj and set

xn+1 = (1− ϕ(xn))xn + ϕ(xn)Txn = Tϕxn.

Notice that, for any n ≥ 0, there exists jn ∈ {1, 2, 3, . . . , p} such that xn ∈ Bjn and xn+1 ∈
Bjn+1.

Then by (2.0.6), we have

∥xn+1 − xn+2∥ = ∥Tϕxn − Tϕxn+1∥ ≤ ∥xn − xn+1∥ − ζ (∥xn − xn+1∥) .
Define δn = ∥xn − xn+1∥. Then one can obtain

(2.0.7) δn+1 ≤ δn − ζ (δn) ≤ δn,

which implies that {δn} is a non-increasing sequence. Hence, {δn} converges to δ ≥ 0.
Assume that δ > 0. Having in view that ζ is non-decreasing, we get 0 < ζ(δ) ≤ ζ(δn).

It follows from (2.0.7) that

δn+1 ≤ δn − ζ (δn) ≤ δn − ζ (δ)

and so

δn+2 ≤ δn+1 − ζ (δn+1) ≤ δn − ζ (δn)− ζ (δn+1) ≤ δn − 2ζ (δ) .
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Inductively, we obtain δn+m ≤ δp −mζ (δ) , which is a contradiction for large m ∈ N.
Therefore we have δ = 0.

Take ε > 0. Choose n0 ∈ N in a way that ∥xn0
− xn0+1∥ ≤ min

{
ε
2 , ζ

(
ε
2

)}
. We assert

that Tϕ is a self-mapping on the closed ball B (xn0 , ε) = {x ∈ X : ∥x− xn0∥ ≤ ε}. To
prove our assertion, take x ∈ B (xn0

, ε). If ∥x− xn0
∥ ≤ ε

2 , then due to (2.0.6) and triangle
inequality, we have

∥Tϕx− xn0∥ ≤ ∥Tϕx− Tϕxn0∥+ ∥Tϕxn0 − xn0∥
≤ ∥x− xn0∥ − ζ (∥x− xN0∥) + ∥xn0+1 − xn0∥

<
ε

2
+
ε

2
= ε.

Now consider the other case, that is ∥x− xn0
∥ > ε

2 . For sure we have, ε2 < ∥x− xn0
∥ ≤ ε

which implies that ζ
(
ε
2

)
≤ ζ (∥x− xn0

∥). Thus, due to (2.0.6) and triangle inequality, we
have

∥Tϕx− xn0
∥ ≤ ∥Tϕx− Tϕxn0

∥+ ∥Tϕxn0
− xn0

∥
≤ ∥x− xn0

∥ − ζ (∥x− xn0
∥) + ∥xn0+1 − xn0

∥

≤ ε− ζ
(ε
2

)
+ ζ

(ε
2

)
≤ ε.

Therefore, in all cases, Tϕx ∈ B (xn0 , ε).
In other words, Tϕ is a self-mapping on the closed ballB (xn0

, ε) and thus xn ∈ B (xn0
, ε)

for each n > n0.
Therefore, the sequence {xn} is Cauchy in the complete subspace

⋃p
j=1Bj . SinceB (xn0

, ε)

is closed, the sequence {xn} is convergent in
⋃p
j=1Bj , say x∗ ∈

⋃p
j=1Bj . By the fact that

{Bj : j = 1, 2, 3, . . . , p} is cyclic representation of
⋃p
j=1Bj with respect to Tϕ, the sequence

{xn} has infinite number of terms in each Bj for all j ∈ {1, ..., p}. Therefore x∗ ∈
⋂p
j=1Bj

and thus
⋂p
j=1Bj ̸= ∅.

Consider the restriction of Tϕ on
⋂p
j=1Bj , that is, Tϕ|⋂p

j=1 Bj
:
⋂p
j=1Bj →

⋂p
j=1Bj

which satisfies the assumptions of Theorem 1 in [26] and thus, Tϕ|⋂p
j=1 Bj

has a unique

fixed point, say z∗ ∈
⋂p
j=1Bj which is obtained by iteration from starting point x0. We

claim that for any initial value x ∈
⋃p
j=1Bj , we get the same limit point z∗ ∈ ∩pj=1Bj .

Indeed, for x ∈ ∪pj=1Bj , by repeating the above process, the corresponding iterative se-
quence yields that Tϕ|⋂p

j=1 Bj
has a unique fixed point, say w∗ ∈ ∩pj=1Bj . Regarding that

z∗, w∗ ∈ ∩pj=1Bj , we have z∗, w∗ ∈ Bj for all j, hence ∥z∗ − w∗∥ and ∥Tϕz∗ − Tϕw
∗∥ are

well defined. Due to (2.0.6),

∥z∗ − w∗∥ = ∥Tϕz∗ − Tϕw
∗∥ ≤ ∥z∗ − w∗∥+ ζ (∥z∗ − w∗∥)

which is a contradiction.
In conclusion, z∗ is the unique fixed point of Tϕ for any initial starting point x0 ∈⋂p
j=1Bj . □

Example 2.2. Let B1 = [0, 1] = B2 . Define a map T : B1 ∪ B2 → B1 ∪ B2 by Tx = x − x2,
for all x ∈ B1 ∪B2. Clearly {B1, B2} is a cyclic representation of B1 ∪B2 with respect to T , but
T is not a weak contraction. To prove this, let x ∈ B1 and y ∈ B2. Then

|Tx− Ty| = |(x− y) · (x+ y + 1)| ≤ 3 · |x− y|
Since ζ ∈ Θ one can’t determine ζ suct that 3 · |x− y| ≤ |x− y| − ζ (|x− y|).

We claim that T is a (ϕ, ψ, ζ)−ECWC.
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Let us take ψ(x) = |x|, for all x ∈ B1 ∪ B2. Then ϕ(x) =
1

1 + |x|
, with ϕ ∈ Ω and

Tϕx =
x

x+ 1
, for all x ∈ B1 ∪ B2. It is easy to check that {B1, B2} is a cyclic representation of

B1 ∪B2 with respect to Tϕ. Further, we need to verify if Tϕ satisfies 2.0.4. To see this, let x ∈ B1

and y ∈ B2. Hence

|Tϕx− Tϕy| =
∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣ = ∣∣∣∣ x− y

(1 + x)(1 + y)

∣∣∣∣
If we take ζ(t) =

t2

t+ 2
then ζ ∈ Θ and

|x− y| − ζ (|x− y|) = |x− y|
|x− y|

2
+ 1

≥ |Tϕx− Tϕy|

since
1

(1 + x)(1 + y)
≤ 1

|x− y|
2

+ 1

. To prove this, we consider two cases:

• case 1: If 0 ≤ x ≤ y ≤ 1, then |x− y| = y − x. The above inequality becomes

(1 + x)(1 + y) ≥ y − x

2
+ 1 ⇔ (2x+ 1)(2y + 3) ≥ 3

which is always true in this case.
• case 2: If 0 ≤ y < x ≤ 1, then |x− y| = x− y. The above inequality becomes

(1 + x)(1 + y) ≥ x− y

2
+ 1 ⇔ (2x+ 3)(2y + 1) ≥ 3

which is always true in this case.
Therefore T is a (ϕ, ψ, ζ)−ECWC, and then by Theorem 2.1 T has a unique fixed point x∗ = 0 ∈
B1 ∩B2.

Corollary 2.1. Let (X, ∥·∥) be a normed space and {Bj : j = 1, 2, 3, . . . , p} a finite collections of
nonempty subsets of X . If T :

⋃p
j=1Bj → X is a mapping with the property that there existes a

positive integer η such that T η is a (ϕ, ψ, ζ)−ECWC, then:
(1) T has a unique fixed point x∗ ∈

⋂p
j=1Bj .

(2) the sequence {xn} given by

xn+1 = (1− ϕ(x))xn + ϕ(x)T ηxn

converges to x∗, for any x0 ∈
⋃p
j=1Bj .

Proof. We apply Theorem 2.1 for the mapping T η and we obtain that T η has a unique
fixed point x∗ ∈

⋂p
j=1Bj , that means T ηx∗ = x∗. We also have:

T η (Tx∗) = T η+1x∗ = T (T ηx∗) = Tx∗

This shows that Tx∗ is a fixed point of T η . But T η has a unique fixed point x∗ hence
Tx∗ = x∗. The remaining part of the proof follows from Theorem 2.1. □

3. APPLICATION TO CYCLIC ITERATED FUNCTION SYSTEMS

An iterated function system (IFS) on a topological space is given by a finite set of con-
tinuous maps defined on the entire space. If the space is X and the maps are Ti : X → X ,
for all 1 ≤ i ≤ n with n ∈ N fixed, then we denote the IFS with {X;T1, T2, . . . , Tn : n ∈ N}.
Let us use the notations C(X) for the collection of all nonempty compact subsets of the
metric space (X, d).
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Definition 3.3. [20] Let C(X) be the collection of all nonempty compact subsets of the metric
space (X, d). For A,B ∈ C(X), define

σ(A,B) = sup
a∈A

{ξ(a,B)},

where ξ(a,B) = inf{d(a, b), b ∈ B}.
Define the functional H : C(X)× C(X) → [0,∞)

H(A,B) = max
{
σ(A,B), σ(B,A)

}
.

The mapping H is called Pompeiu-Hausdorff metric on C(X) induced by d. The metric space
(C(X),H) is complete (compact) provided that (X, d) is complete (compact).

Remark 3.1. [20] As the image of A ∈ C(X) under the continuous mapping T is compact, there
is a natural way to define the induced mapping T : C(X) → C(X) by T(A) := T (A), for all
A ∈ C(X), where T (A) denotes the image of A under T .

Definition 3.4. [2] Let {X;T1, T2, . . . , Tn : n ∈ N} be an iterated function system (IFS) and
T : C(X) → C(X) be given by

T(A) =

n⋃
i=1

Ti(A), for any A ∈ C(X).

If A = T(A), then A is called the attractor of the IFS, and it is a fixed point of T.

In the sequel, we need the following lemmas.

Lemma 3.2. [1] If {Aj}j∈∧, {Bj}j∈∧ are two finite collections of sets in (C(X),H), then

H
(
∪j∈∧ Aj ,∪j∈∧Bj) ≤ max

j∈
∧ H(Aj , Bj),

where
∧

= {1, 2, 3, ..., n}.

Lemma 3.3. [1] Let (X, d) be a complete metric space. If A is a closed subset of X, then C(A) is
also closed subset of the complete metric space (C(X),H).

Before giving our main result in this section, we prove the following theorem.

Theorem 3.2. Let (X, ∥·∥) be a normed space and {Bj : j = 1, 2, 3, . . . , p} a finite collection
of nonempty closed subsets of X . If T :

⋃p
j=1Bj → X is an ECWC, then the induced map

T :
⋃p
j=1 C(Bj) → C(X) satisfies the following conditions:

(1) there exist ψ ∈ 0 such that for ϕ(x) =
1

1 + ψ(x)
, ∀x ∈ X we have ϕ ∈ Ω and {C(Bj) :

j = 1, 2, 3, . . . , p} is cyclic representation of
⋃p
j=1 C(Bj) with respect to Tϕ, provided

that Tϕ defined by (2.0.1) is continuous
(2) there exists ζ∗ ∈ Θ such that for each j ∈ {1, 2, ..., p}, A ∈ C(Bj) and B ∈ C(Bj+1)

with Bp+1 = B1, we have

(3.0.1) H
(
ψ(x)(A) +T(A)

1 + ψ(x)
,
ψ(y)(B) +T(B)

1 + ψ(y)

)
≤ H(A,B)− ζ∗(H(A,B)),

Moreover, the induced map T has a unique fixed point.

Proof. Let ψ ∈ 0 and

(3.0.2) ϕ(x) =
1

1 + ψ(x)
, ∀x ∈ X.

such that ϕ ∈ Ω. The average mapping Tϕ is defined by (2.0.1). Similarly to the proof of
Theorem 2.1 the (ϕ, ψ, ζ)-ECWC condition (2.0.3) becomes
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(3.0.3) ∥Tϕx− Tϕy∥ ≤ ∥x− y∥ − ζ (∥x− y∥) ,
for all x ∈ Bj , y ∈ Bj+1 for 1 ≤ j ≤ p with Bp+1 = B1.

Note that in view of (3.0.2), the inequality (3.0.1) is equivalent to

(3.0.4) H (Tϕ(A),Tϕ(B)) ≤ H(A,B)− ζ∗(H(A,B)).

Let A ∈ C(Bj), for some j ∈ {1, 2, ..., p}. Since {Bj : j = 1, 2, 3, . . . , p} is cyclic representa-
tion of

⋃p
j=1Bj with respect to Tϕ, we have that

Tϕ(A) ⊆ Bj+1.

By continuity of Tϕ, Tϕ(A) is a compact set and hence

Tϕ(A) ∈ C(Bj+1).

For all j ∈ {1, 2, ..., p}, we have

(3.0.5) Tϕ(C(Bj)) ⊆ C(Bj+1).

We will prove that

(3.0.6) σ

(
ψ(x)(A) +T(A)

1 + ψ(x)
,
ψ(y)(B) +T(B)

1 + ψ(y)

)
≤ H(A,B)− ζ∗(H(A,B)).

Again in view of (3.0.2), the inequality (3.0.6) is equivalent to

(3.0.7) σ (Tϕ(A),Tϕ(B)) ≤ H(A,B)− ζ∗(H(A,B)).

For arbitrary x ∈ A, we have

ξ(Tϕx,Tϕ(B)) = min{∥Tϕx− Tϕy∥ : y ∈ B}
≤ ∥Tϕx− Tϕy∥ , ∀y ∈ B

≤ ∥x− y∥ − ζ (∥x− y∥) , ∀y ∈ B.(3.0.8)

Since ζ ∈ Θ and ∥x− y∥ ≤ σ(A,B) ≤ H(A,B), we can find a real number a1 ≥ 1 such
that

ζ (σ(A,B))

a1
≤ ζ (∥x− y∥) .

Similarly, we can find a real number a2 ≥ 1 such that

ζ (H(A,B))

a1a2
= ζ∗ (H(A,B)) ≤ ζ (σ(A,B))

a1
,

Clearly, ζ∗ ∈ Θ. Hence, by the compactness of B and inequality (3.0.8), it follows that

ξ(Tϕx,Tϕ(B)) ≤ ξ(x,B)− ζ (ξ(x,B)) ,

≤ σ(A,B)− ζ (σ(A,B))

a1
,

≤ H(A,B)− ζ∗(H(A,B)).(3.0.9)

As x ∈ A is arbitrary and T(A), is a compact set, we will get z ∈ A such that

σ (Tϕ(A),Tϕ(B)) = ξ(Tϕz,Tϕ(B)),

for which the inequality (3.0.9) is true. Hence, we have

(3.0.10) σ (Tϕ(A),Tϕ(B)) ≤ H(A,B)− ζ∗(H(A,B)).

Similarly,

(3.0.11) σ (Tϕ(B),Tϕ(A)) ≤ H(A,B)− ζ∗(H(A,B)).
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By combining (3.0.10) and (3.0.11), we get (3.0.7). Notice that T satisfies all the conditions
of Theorem 2.1, therefore T has a unique fixed point. □

We introduce now the following concept.

Definition 3.5. An enriched cyclic weak iterated function system (ECWIFS) consists in a Banach
space X and a finite collection of nonempty closed subsets of X , B1, B2, . . . Bp for some p ∈
N, together with a finite set of ECWC continuous mappings, Ti :

⋃p
j=1Bj → X, for all i ∈

{1, 2, . . . , n} for some n ∈ N being (ϕi, ψi, ζi)-ECWC. We will use the following notation for
ECWIFS:

{(X,B1, B2, . . . Bp);T1, T2, . . . Tn : n, p ∈ N}.
We mention here that since Ti are (ϕi, ψi, ζi)-ECWC mappings, the average mappings

are defined by (Ti)ϕi
(x) = (1− ϕi(x))x+ ϕi(x)Tix, for all x ∈ X and n ∈ N.

Theorem 3.3. Consider {(X,B1, B2, . . . Bp);T1, T2, . . . , Tn : n, p ∈ N} an ECWIFS with Ti
beeing (ϕi, ψi, ζi)-ECWC for all i ∈ {1, 2, . . . , n}, and the map U :

⋃p
j=1 C(Bj) →

⋃p
j=1 C(Bj),

defined by U(B) =
⋃n
i=1 (Ti)ϕi

(B) for every B ∈
⋃p
j=1 C(Bj). Then there exists ζ∗ ∈ Θ such

that
H(U(A), U(B)) ≤ H(A,B)− ζ∗(H(A,B)),

where ζ∗ = min{ζ∗i , i = 1, 2, .., n}. Moreover, the U has a unique fixed point (attractor or in
general the fractal of IFS).

Proof. It is easy to see that U (C(Bj)) ⊆ C(Bj+1), for all j ∈ {1, 2, 3, . . . , p} .
Indeed, it follows from Theorem 3.2 that {C(Bj) : j = 1, 2, 3, . . . , p} is a cyclic represen-

tation of
⋃p
j=1 C(Bj) with respect to each (Ti)ϕi

since each Ti are continuous (ϕi, ψi, ζi)−ECWC
mappings, for all i ∈ {1, 2, 3, . . . , n} .

Also, it follows from Theorem 3.2, that

(3.0.12) H
(
ψi(x)(A) +Ti(A)

1 + ψi(x)
,
ψi(y)(B) +Ti(B)

1 + ψi(y)

)
≤ H(A,B)− ζ∗i (H(A,B)),

for all i ∈ {1, 2, 3, . . . , n} . Let A ∈ C(Bj) and B ∈ C(Bj+1) for some j ∈ {1, 2, 3, . . . , p}.
Then, by Lemma 3.2 and (3.0.12), we have

H(U(A), U(B)) = H
(
∪ni=1 {(Ti)ϕi

(A)},∪ni=1{(Ti)ϕi
(B)}

)
≤ max

{
H((T1)ϕ1

(A), (T1)ϕ1
(B)), . . . ,H((Tn)ϕn

(A), (Tn)ϕn
(B))

}
≤ max

{
H(A,B)− ζ∗1 (H(A,B)), . . . ,H(A,B)− ζ∗n(H(A,B))

}
≤ H(A,B)− ζ∗(H(A,B)),

where ζ∗ = min{ζ∗i , i = 1, 2, .., n}.
Since X is a Banach space, (C(X),H) is a complete metric space. Using Lemma 3.3, C(Bj)
is nonempty closed subset of C(X) for every j ∈ {1, 2, 3, . . . , p} . Clearly, U satisfies all the
conditions of Theorem 2.1.

Hence, by Theorem 2.1, U has a unique fixed point. □

The next example supports our previous result.

Example 3.1. Let B1 = [0, 2] and B2 = [1, 3]. We define the map T1, T2 : B1 ∪B2 → R by

T1(x) =



22 + x− 9x2

8
if x ∈ [0, 2],

18 + x− 8x2

8
if x ∈ [2,

11

4
]

62 + 7x− 16x2

8
if x ∈ [

11

4
, 3],
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and

T2(x) =



28 + x− 9x2

8
if x ∈ [0, 2],

6 + x− 2x2

2
if x ∈ [2,

11

4
]

34 + 5x− 2x2

4
if x ∈ [

11

4
, 3],

Assume that ψ(x) = 1+|x|, for all x ∈ R, with ϕ1(x) = ϕ2(x) =
1

2 + |x|
, and ζ1(t) = ζ2(t) =

t
3

for all t ∈ [0,∞) . Then we have

(T1)ϕ1
(x) =



11− x

8
if x ∈ [0, 2],

9

8
if x ∈ [2, 114 ]

31− 8x

8
if x ∈ [ 114 , 3],

and

(T2)ϕ2(x) =



14− x

8
if x ∈ [0, 2],

3

2
if x ∈ [2, 114 ]

17− 4x

4
if x ∈ [ 114 , 3],

Clearly, (T1)ϕ1 and (T2)ϕ2 are continuous and it is easy to check that (T1)ϕ1 and (T2)ϕ2 are
(ϕ1, ψ1, ζ1)−ECWC and (ϕ2, ψ2, ζ2)−ECWC mappings, respectively.

Hence, {(R, B1, B2);T1, T2} is an ECWIFS and it has the attractor A. The attractor A is
similar to a Cantor set for [1, 2] with 8 sub-intervals.

Let A0 = [1, 2]. We construct the sequence {An} in the following way:

A1 = U (A0) = (T1)ϕ1
(A0) ∪ (T2)ϕ2

(A0) =

[
9

8
,
10

8

]⋃[
12

8
,
13

8

]
A2 = U (A1) = (T1)ϕ1

(A1) ∪ (T2)ϕ2
(A1)

=

[
75

82
,
76

82

]⋃[
78

82
,
79

82

]⋃[
99

82
,
100

82

]⋃[
102

82
,
103

82

]
A3 = U (A2) = (T1)ϕ1

(A2) ∪ (T2)ϕ2
(A2)

=

[
601

83
,
602

83

]⋃[
604

83
,
605

83

]⋃[
626

83
,
627

83

]⋃[
628

83
,
629

83

]⋃
⋃ [

792

83
,
793

83

]⋃[
796

83
,
797

83

]⋃[
817

83
,
818

83

]⋃[
820

83
,
821

83

]
.......................................................................................

The initial three steps of the iterative process are illustrated in the diagram below.



A new type of cyclic iterated function systems... 1089

Also we can see that ... ⊂ A2 ⊂ A1 ⊂ A0, hence the sequence {An} is non-increasing and

A = lim
n→∞

An =
∞⋃
n=1

An.
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[6] Berinde, V.; Păcurar, M. Existence and Approximation of Fixed Points of Enriched Contractions and En-
riched ϕ-Contractions. Symmetry 13 (2021), no. 3, Article no. 498.
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