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ABSTRACT. In this paper, we firstly propose a Bregman projection algorithm with a new extrapolation tech-
nique for solving quasi-monotone variational inequalities in reflexive Banach spaces. We establish the weak

convergence and non-asymptotic O
(

1√
n

)
convergence rate of the algorithm under appropriate and mild as-

sumptions. Secondly, we introduce the second algorithm and demonstrate its linear convergence under stronger
conditions. Our numerical experiments show that our methods outperform existing algorithms in the literature.

1. INTRODUCTION

Throughout the paper, let E be a reflexive Banach space with the dual space E∗, the
dual pair between E∗ and E be denoted by ⟨·, ·⟩. Suppose C is a nonempty, closed and
convex subset of E, and A : C → E∗ is a nonlinear mapping. The variational inequalities
(VI) have the following form: find a point x∗ ∈ C such that

(1.1) ⟨Ax∗, y − x∗⟩ ≥ 0, ∀ y ∈ C.

We denote by V I(C,A) the solution set of VI (1.1). Meanwhile, the solution set of the
dual variational inequalities is represented by

(1.2) DV I(C,A) = {x∗ : ⟨Ay, y − x∗⟩ ≥ 0, ∀ y ∈ C},

which is a closed and convex subset in C, see [8].
Since variational inequalities were introduced firstly by Fichera ([9], [10]) in 1963, they

have become a useful tool in studying various linear and nonlinear problems from elas-
ticity, economics, transportation, optimization, network analysis, control theory, and en-
gineering sciences, see, for example, [8, 22, 23, 45]. Due to the importance of variational
inequalities in modern scientific research, numerous numerical methods for solving vari-
ational inequalities have been presented.

In particular, the extragradient technique (EGM) for solving variational inequalities,
which was put forth by Korpelevich [24] and is among the most well-liked and extensively
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applied projection-type methods. It can be described simply as follows:{
vn = PC(un − λAun),

un+1 = PC(un − λAvn).

where λ > 0 is a suitable step size and PC (x) = argmin
{

1
2∥y − x∥2 : y ∈ C

}
.

However, EGM needs to compute two projections onto C in each iterative step. This
may have a bad influence on the convergence speed of the algorithm in the case of the set
C is very complicated. To overcome this shortcoming, Tseng [42] introduced the following
method {

vn = PC (un − λAun) ,

un+1 = vn − λ (Avn −Aun) ,

which is usually called the Tseng extragradient method (TEGM). And TEGM only requires
to compute the metric projection once in each iteration, which significantly reduces the
complexity of computations and improves its overall computational efficiency. Over time,
both EGM and TEGM have undergone numerous improvements and enhancements in
Hilbert spaces and more general Banach spaces, see [1, 15, 16, 18, 19, 36, 38, 48, 46].

Additionally, Voung [43] proposed the relaxed inertial projection algorithm (RIPA) by
a discrete version of the proposed dynamical system for solving variational inequalities
in Hilbert spaces: {

wn = vn + θ(vn − vn−1),

vn+1 = (1− ρ)wn + ρPC (wn − λAwn) .

If A is strongly pseudo-monotone and Lipschitz continuous in a Hilbert space, then the
linear convergence of RIPA is proved under suitable choices of parameters.

Under the Euclidean distance, the golden ratio algorithm for variational inequalities
was introduced by Malitsky [26] and its name comes from the fact that this algorithm
owns a new extrapolation that is φ−1

φ xk + 1
φwk−1 and φ = 1+

√
5

2 . Inspired by [26], re-
cently, Oyewole and Reich [31] introduced the new extrapolation into the subgradient ex-
tragradient method for solving pseudomonotone variational inequalities and presented
two algorithms and proved the weak convergence and linear convergence of the algo-
rithms, respectively. Although the coefficient φ ∈ (1,+∞) and is no longer 1+

√
5

2 , they
still call this extrapolation the golden ratio technique.

Many well-known distance concepts, such as the square of Euclidean distance, the
Kullback-Leibler distance, and the Squared Mahalanobis distance, are examples of Breg-
man distances generated by various types of functions. Replacing the Euclidean distance
with a more general Bregman distance is a useful way to potentially improve extragra-
dient algorithms for variational inequalities in Hilbert spaces or Banach spaces. For in-
stance, Wang et al. [46] introduced three new Bregman projection methods with non-
monotone adaptive step sizes in real Hilbert spaces. Under suitable conditions, they
proved the weak convergence and strong convergence of these methods. In reflexive Ba-
nach spaces, Jolaoso et al. [17] introduced a single Bregman projection method with adap-
tive step sizes and Izuchukwu et al. [16] proposed a one-step Bregman projection method
with adaptive step sizes and proved some weak and strong convergence results for the
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proposed method under suitable conditions.Tam and Uteda [38] extended the golden ra-
tio algorithms of [26] to the Bregman fixed step size version and Bregman-adaptive step
size version, and established the linear convergence rate of the Bregman golden ratio algo-
rithm with fixed step sizes. Under the Bregman distance framework, other extragradient-
type algorithms for solving variational inequalities can be found in [13, 40, 41, 44]. It’s
worth noting that there is little literature for discussing the convergence rate of the extra-
gradient type algorithm with adaptive step sizes under the Bregman distance.

Driven by the previously mentioned research, we firstly provide a new Bregman pro-
jection algorithm for solving quasi-monotone variational inequalities in Banach spaces.
The algorithm incorporates the new extrapolation technique whose ideas are derived
from the golden ratio technique of [31, 26] and non-monotone adaptive step sizes strat-
egy, which results in a fast convergence rate without the need for prior information on
the Lipschitz constant of the mapping A. The weak convergence and non-asymptotic
O
(

1√
n

)
convergence rate for the algorithm is proved under appropriate and mild as-

sumptions. Furthermore, the second algorithm is showcased, and its linear convergence
rate is determined. Some numerical experiments show that the proposed algorithms are
more effective than some existing ones.

The structure of the paper is as follows: Section 2 introduces the necessary definitions
and lemmas for this article. In Section 3, we present the main results of the proposed
algorithm. Section 4 includes several numerical experiments to showcase the performance
of our algorithms. Finally, Section 5 provides concluding remarks.

2. PRELIMINARIES

In this section, we present some definitions and preliminary results that is needed in
our convergence analysis. In the sequel, we denote the weak convergence and strong
convergence of a sequence {xn} to x by xn ⇀ x and xn → x, respectively.

Definition 2.1. The mapping A : C → E∗ is said to be

(i) monotone on C if

⟨Ay −Ax, y − x⟩ ≥ 0, ∀x, y ∈ C;

(ii) pseudo-monotone on C if

⟨Ax, y − x⟩ ≥ 0 =⇒ ⟨Ay, y − x⟩ ≥ 0, ∀x, y ∈ C;

(iii) quasi-monotone on C if

⟨Ax, y − x⟩ > 0 =⇒ ⟨Ay, y − x⟩ ≥ 0, ∀x, y ∈ C;

(iv) sequentially weakly continuous at x if Axn ⇀ Ax whenever xn ⇀ x;
(v) L-Lipschitz continuous on C if there exists some constant L > 0 satisfying

∥Ax−Ay∥ ≤ L∥x− y∥, ∀x, y ∈ C;

(vi) β-strongly pseudo-monotone on C if there exists some constant β > 0 satisfying

⟨Ax, y − x⟩ ≥ 0 =⇒ ⟨Ay, y − x⟩ ≥ β∥x− y∥2, ∀x, y ∈ C.
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Remark 2.1. From the above definition, we can see that (i)=⇒ (ii)=⇒(iii) and (vi)=⇒ (ii). But
the converse is generally false, see [39].

The domain of f denotes by domf := {x ∈ E : f (x) < ∞} and the interior of the do-
main of f is represented by int(domf).

Definition 2.2. The function f : E → (−∞,+∞] is said to be:

(1) proper if dom f ̸= ∅;
(2) lower semi-continuous if {x ∈ dom f : f (x) ≤ a} is closed set for ∀a ∈ R;
(3) convex if f (tx+ (1− t)y) ≤ tf (x) + (1− t) f (y) , ∀x, y ∈ domf, t ∈ [0, 1] and it

is said to be strictly convex if f (tx+ (1− t)y) < tf (x) + (1− t) f (y) , ∀x, y ∈ domf

with x ̸= y and t ∈ (0, 1);
(4) uniformly convex if there exists a nondecreasing and continuous function g : [0,∞) →

[0,∞) with g(0) = 0 such that f (tx+ (1− t)y) ≤ tf (x) + (1− t) f (y) − t(1 −
t)g (∥x− y∥) , ∀x, y ∈ domf and t ∈ [0, 1];

(5) bounded on bounded sets if f(U) is bounded for each bounded subset U of E;
(6) uniformly smooth if there exists a nondecreasing and continuous function h : [0,∞) →

[0,∞) with h(0) = 0 such that f (tx+ (1− t)y) ≥ tf (x) + (1− t) f (y) − t(1 −
t)h (∥x− y∥) , ∀x, y ∈ domf and t ∈ [0, 1].

Assume that f : E → (−∞,+∞] is a proper and convex function. The Fenchel conju-
gate of f is defined by f∗ (x∗) = sup

x∈E
{⟨x∗, x⟩ − f(x)} , ∀x∗ ∈ E∗.

The directional derivative of f at x ∈ int (domf) in the direction y ∈ E is defined by

(2.1) f ′ (x, y) := lim
t→0

f (x+ ty)− f(x)

t
.

We say that f is Gâteaux differentiable at x if for all y ∈ E, the directional derivative
of f at x exists and f ′(x, y) = ⟨∇f(x), y⟩, where ∇f(x) is the value of the gradient of f
at x. If f is Gâteaux differentiable at each x ∈ int (domf), then f is said to be Gâteaux
differentiable.

We say that f is Fréchet differentiable at x if the limit (2.1) is attained uniformly for
every y ∈ E with ∥y∥ = 1. Furthermore, if the limit (2.1) is attained uniformly for each
x ∈ C ⊂ E and y ∈ E with ∥y∥ = 1, then f is said to be uniformly Fréchet differentiable on
C. It is clear that if f is a Fréchet differentiable function, then it is Gâteaux differentiable,
see [32].

Definition 2.3 ([34, 35]). Let f : E → (−∞,+∞] be a proper, lower semi-continuous and
convex function. It is said to be Legendre if f such that

(L1) int(domf) ̸= ∅, f is Gâteaux differentiable on int(domf) and dom∇f = int(domf);
(L2) int(domf∗) ̸= ∅, f∗ is Gâteaux differentiable on int(domf∗) and dom∇f∗ = int(domf∗).

If f is a Legendre function, then ∇f is a bijection from int(domf) into int(domf∗) such that
∇f∗ = (∇f)−1, see [2].

Definition 2.4 ([3]). If f : E → (−∞,+∞] is convex and Gâteaux differentiable, then Df :

domf × int(domf) → [0,∞) is referred to the Bregman distance in terms of f , where

Df (x, y) = f (x)− f (y)− ⟨∇f (y) , x− y⟩ ,∀x ∈ domf, y ∈ int (domf) .
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The geometric of Bregman distance associated with f can be found in [19, 36].
The function Df owns the following properties:

(a) Df (x, y)−Df (z, y) = f (x)−f (z)−⟨∇f (y) , x− z⟩ ,∀x, z ∈ domf, y ∈ int(domf);

(b) three-point identity, that is,

Df (x, y)−Df (x, z)−Df (z, y) = ⟨∇f (z)−∇f (y) , x− z⟩ ,∀x, z ∈ domf, y ∈ int(domf);

(c) let x ∈ domf, y, u, v ∈ int(domf) and a ∈ R, if ∇f (y) = a∇f (u) + (1− a)∇f (v),
we have

Df (x, y) = a [Df (x, u)−Df (y, u)] + (1− a) [Df (x, v)−Df (y, v)] .

The proof of the Property (c) can be found in [38].

The Gâteaux differentiable function f is called to be strongly convex with a fixed constant
κ > 0, if

⟨∇f (x)−∇f (y) , x− y⟩ ≥ κ∥x− y∥2,∀x, y ∈ domf.

This implies

f (x) ≥ f (y) + ⟨∇f (y) , x− y⟩+ κ

2
∥x− y∥2,∀x, y ∈ domf,

and then
Df (x, y) ≥

κ

2
∥x− y∥2,∀x, y ∈ domf.

In addition, let Gâteaux differentiable function f : domf → (−∞,∞] be strongly convex, and
C be a nonempty, closed and convex subset of domf . We refer to the unique vector P f

C (u) ∈ C as
Bregman projection of f of x ∈ int(domf) onto C if

Df

(
P f
C (x) , x

)
= inf {Df (v, x) , v ∈ C} .

Moreover, a function f : E → (−∞,+∞] is said to be strongly coercive if

lim
∥x∥→∞

f (x)

∥x∥
= +∞.

Definition 2.5 ([34, 35]). The function vf : int(domf)× [0,+∞) → [0,+∞) is defined by

vf (x, t) := inf {Df (y, x) : y ∈ int(domf), ∥y − x∥ = t} ,

where f is a convex and Gâteaux differentiable function. We say that the function f is totally
convex at a point x ∈ int(domf) if vf (x, t) > 0, ∀ t > 0. Moreover, we say that the function f is
totally convex on bounded subsets of E if vf (X, t) > 0 for every bounded subset X of E and for
any t > 0, where

vf (X, t) = inf {vf (x, t) : x ∈ X ∩ int(domf)} .

It is evident that if f is strongly convex, then f is totally convex. In addition, it is well
known that f is totally convex on bounded subsets if and only if f is uniformly convex on
bounded subsets, see Theorem 2.10 of [4], and if f is uniformly convex, then f is totally
convex, but the converge is generally false, see Section 1.3 of [5].

Lemma 2.1 ([20]). If A is continuous, then DV I (C,A) ⊂ V I (C,A) and if A is a pseudo-
monotone mapping too, then DV I (C,A) = V I (C,A).
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Lemma 2.2 ([33]). Let K be a given nonempty bounded subset of E. Suppose that the bounded
function f : E → R is convex and uniformly Fréchet differentiable on K, then ∇f is uniformly
continuous on K.

Lemma 2.3 ([27]). Let the function f : E → R be Gâteaux differentiable and totally convex on
E, if {xn} ⊂ E and x0 ∈ E, {Df (x0, xn)} is bounded, then {xn} is also bounded.

Lemma 2.4 ([7]). Let x ∈ E and f : E → R be a totally convex and Gâteaux differentiable
function. Then the following conclusions hold:

(a) p = P
f
C(x) ⇔ ⟨∇f(x)−∇f(p), z − p⟩ ≤ 0, ∀z ∈ C;

(b) Df (u, P
f
C(x)) +Df (P

f
C(x), x) ≤ Df (u, x), ∀u ∈ C.

Lemma 2.5 ([29]). Suppose that f : E → R is a convex function and f is bounded on bounded
subsets of E. Then the following three statements are equivalent:

(a) f is uniformly convex and strongly coercive on bounded subsets of E;
(b) domf∗ = E∗, f∗ is uniformly smooth and bounded on bounded subsets of E∗;
(c) domf∗ = E∗, f∗ is Fréchet differentiable, moreover, ∇f∗ is uniformly norm-to-norm

continuous on bounded subsets of E∗.

Lemma 2.6 ([5]). Let f : E → R be strongly coercive function. Then the following conclusions
hold:

(a) ∇f : E → E∗ is one-to-one, onto and norm-to-weak∗ continuous;
(b) the set {x ∈ E : Df (x, y) ≤ γ} is bounded for each y ∈ E and γ > 0;
(c) domf∗ = E∗, f∗ is Gâteaux differentiable and ∇f∗ = (∇f)−1.

Lemma 2.7 ([29]). Suppose that f : E → R is a Gâteaux differentiable function that is uni-
formly convex on bounded subsets of E. If {un} and {vn} are two bounded sequences in E, then
lim
n→∞

Df (vn, un) = 0 if and only if lim
n→∞

∥vn − un∥ = 0.

Assume that f : E → R ∪ {+∞} is a Legendre function. The bifunction Vf : domf ×
domf∗ → [0,+∞) is defined by

Vf (y, y
∗) = f (y)− ⟨y, y∗⟩+ f∗ (y∗) ,∀y ∈ domf, y∗ ∈ domf∗.

Thus

Vf (y, y
∗) = Df (y,∇f∗(y∗)) ,∀y ∈ domf, y∗ ∈ domf∗

and

Vf (y, y
∗) + ⟨∇f∗ (y∗)− y, z∗⟩ ≤ Vf (y, y

∗ + z∗) ,∀y ∈ domf, y∗, z∗ ∈ domf∗.

From [28], we know that Vf is convex for the second variable. So we have

(2.2) Df

y,∇f∗

 N∑
j=1

aj∇f (yj)

 ≤
N∑
j=1

ajDf (y, yj),

where y ∈ E, yj ∈ E and aj ∈ (0, 1) with
N∑
j=1

aj = 1.
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Lemma 2.8 ([11]). Let a Gâteaux differentiable function f : E → (−∞,∞] be proper and
strictly convex on int(domf) in E, and the sequence {xn} ⊂ domf such that xn ⇀ x for some
x ∈ int(domf). Thus

lim inf
n→∞

Df (x, xn) < lim inf
n→∞

Df (y, xn) , ∀y ∈ domf, y ̸= x.

Lemma 2.9 ([6]). Let {an} and {bn} be two non-negative real sequences. If there exists N ∈ N
satisfying

an+1 ≤ an − bn, ∀n ≥ N,

then lim
n→∞

bn = 0 and lim
n→∞

an exists.

Lemma 2.10 ([30]). Let {βn}, {θn} and {γn} be three non-negative real sequences satisfying

γn+1 ≤ βnγn + θn, ∀n ∈ N.

If {βn} ⊂ [1,+∞),
∞∑

n=1
(βn − 1) < +∞, and

∞∑
n=1

θn < +∞, then lim
n→∞

γn exists.

3. ALGORITHM AND CONVERGENCE ANALYSIS

In this section, we firstly present a novel Bregman projection algorithm with the new
extrapolation technique for solving quasi-monotone variational inequalities in Banach
spaces, and prove the weak convergence, nonasymptotic O

(
1√
n

)
convergence rate of the

method, respectively. For convenience, we introduce the following conditions:

(A1) the function f : E → R is bounded, κ- strongly convex, uniformly Fréchet differ-
entiable and Legendre;

(A2) the function f : E → R is strongly coercive;
(A3) the mapping A : E → E∗ is quasi-monotone and Lipschitz continuous with L > 0;
(A4) DV I (C,A) ̸= ∅;
(A5) the mapping A : E → E∗ satisfies the following property:

whenever {qn} ⊂ C, qn ⇀ x, one has ∥Ax∥ ≤ lim inf
n→∞

∥Aqn∥.

If A : E → E∗ is sequentially weakly continuous, then the Condition (A5) holds. But the
converse is not true, for details, see Remark 2 in [46]. Therefore, the Condition (A5) is
weaker than the Condition (A2) of [12] and the Condition (C3) of [47], respectively. Now
we introduce our algorithm.

Algorithm 1.
Initialization: Take w0, x1 ∈ C, γ1 > 0, σ ∈ (0,min {1, κ}). Set n := 1. Choose real
non-negative sequences {βn} , {tn} , {θn} and {αn} such that the following conditions hold:

(1) {βn} ⊂ [1,+∞),
∞∑

n=1
(βn − 1) < +∞ and

∞∑
n=1

θn < +∞;

(2) 0 < φ1 ≤ tn ≤ 1;
(3) 0 < a ≤ αn+1 ≤ αn ≤ b < 1.

Iterative steps: Having xn and wn−1, compute the next iterate xn+1 as follows:

Step 1. Compute
wn = ∇f∗ ((1− αn)∇f (xn) + αn∇f (wn−1)) .
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Step 2. Compute
yn = P f

C (∇f∗ (∇f (wn)− γnAwn))) .

Step 3. Compute

xn+1 = ∇f∗ (tn∇f (yn)− (tn − 1)∇f (wn)− tnγn (Ayn −Awn)) ,

where

(3.1) γn+1 =

min
{

σ∥wn−yn∥
∥Awn−Ayn∥ , βnγn + θn

}
, if Awn ̸= Ayn,

βnγn + θn, otherwise.

Update n and go to iterative step.

Remark 3.2. Assume that the mapping A : E → E∗ is Lipschitz continuous with L > 0. Let
{γn} be the sequence generated by (3.1). Then we have

lim
n→∞

γn = γ ≥ min
{σ

L
, γ1

}
.

Proof. According to the definition of {γn} and the choice of βn and θn, using Lemma 2.10,
we have lim

n→∞
γn = γ. Since A is Lipschitz continuous with L > 0, we have

σ ∥wn − yn∥
∥Awn −Ayn∥

≥ σ ∥wn − yn∥
L ∥wn − yn∥

=
σ

L
.

Moreover, thanks to βn ≥ 1 and θn ≥ 0, we obtain βnγn + θn ≥ γn. Therefore, we have
γn ≥ min

{
σ
L , γ1

}
> 0, ∀ n ∈ N. □

Remark 3.3. (i) Step 1 of Algorithm 1 is different from the inertial acceleration term in [46].
If f(x) = 1

2∥x∥
2, αn = 2√

5+1
and E = Rm, then Step 1 of Algorithm 1 becomes (22) of

the golden ratio algorithm, that is, (22) of Algorithm 1 in [26]. Specially, if f(x) = 1
2∥x∥

2,
ϕ ∈ (0,+∞), αn = 1

ϕ and E is a Hilbert space, then Step 1 of Algorithm 1 is called to be
the golden ratio technique studied in [31, 49].

(ii) The sequence of step sizes {γn} may be non-monotone and only need a simple calculation
of known information without any prior estimation of parameters, such as the Lipschitz
constant of the underlying operator.

(iii) Condition (A2) is used commonly for Bregman projection methods of variational inequali-
ties in reflexive Banach spaces, see [12, 16, 47]. By Lemma 2.6, we know that ∇f and ∇f∗

are one-to-one, onto and norm-to-weak∗ continuous under Condition (A2). So Condition
(A2) can assure the sequences {wn}, {yn} and {xn} generated by Algorithm 1 are well
defined.

To discuss the convergence and convergence rate of Algorithm 1, we next state some
lemmas.

Lemma 3.11. Assume that Conditions (A1)−(A4) are satisfied. Let {xn} be a sequence generated
by Algorithm 1. Then the following inequality holds:

Df (p, xn+1) ≤ Df (p, wn)− σn, ∀n ∈ N,

where p ∈ DV I (C,A), σn := tn

(
1− σγn

κγn+1

)
Df (yn, wn) + tn

(
1− σγn

κγn+1

)
Df (xn+1, yn) .
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Proof. Let p ∈ DV I (C,A). By the definition of xn+1, we have
(3.2)
Df (p, xn+1) = f (p)− f (xn+1)− ⟨tn∇f (yn)− (tn − 1)∇f (wn) , p− xn+1⟩

+ γntn ⟨Ayn −Awn, p− xn+1⟩

= tn (f (p)− f (xn+1)− ⟨∇f (yn) , p− xn+1⟩)

− (tn − 1) (f (p)− f (xn+1)− ⟨∇f (wn) , p− xn+1⟩)

+ γntn ⟨Ayn −Awn, p− xn+1⟩

= tn (Df (p, yn)−Df (xn+1, yn))− (tn − 1) (Df (p, wn)−Df (xn+1, wn))

+ γntn ⟨Ayn −Awn, p− xn+1⟩ .

Thanks to the three-point identity, we have

(3.3) Df (p, yn) = Df (p, wn)−Df (yn, wn) + ⟨∇f (wn)−∇f (yn) , p− yn⟩ .

Substituting (3.3) into (3.2), we have
(3.4)
Df (p, xn+1) = Df (p, wn)− tn (Df (yn, wn) +Df (xn+1, yn))− (1− tn)Df (xn+1, wn)

+ tn ⟨∇f (wn)−∇f (yn) , p− yn⟩+ γntn ⟨Ayn −Awn, p− xn+1⟩ .

By the definition of yn, yn ∈ C, p ∈ DV I (C,A) and Lemma 2.4, we have

(3.5) ⟨∇f (wn)− γnAwn −∇f (yn) , p− yn⟩ ≤ 0,

and so

(3.6) ⟨∇f (wn)−∇f (yn) , p− yn⟩ ≤ ⟨γnAwn, p− yn⟩ .

We can conclude that

(3.7)

⟨∇f (wn)−∇f (yn) , p− yn⟩+ γn ⟨Ayn −Awn, p− xn+1⟩

≤ γn ⟨Awn, p− yn⟩+ γn ⟨Ayn −Awn, p− xn+1⟩

= γn ⟨Awn −Ayn, xn+1 − yn⟩ − γn ⟨Ayn, yn − p⟩ .

Combining (3.4), (3.7) and tn ∈ (0, 1], we obtain

(3.8)
Df (p, xn+1) ≤ Df (p, wn)− tn (Df (yn, wn) +Df (xn+1, yn))

+tnγn ⟨Awn −Ayn, xn+1 − yn⟩ − tnγn ⟨Ayn, yn − p⟩ .

Thanks to p ∈ DV I (C,A), we can get ⟨Ayn, yn − p⟩ ≥ 0. This and Remark 3.2 implies that
(3.9)
Df (p, xn+1) ≤ Df (p, wn)− tn (Df (yn, wn) +Df (xn+1, yn)) + tnγn ⟨Awn −Ayn, xn+1 − yn⟩ .
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Since f is κ-strongly convex and the definition of γn, we have

(3.10)

Df (p, xn+1) ≤ Df (p, wn)− tn (Df (yn, wn) +Df (xn+1, yn))

+ tnγn ∥Ayn −Awn∥ ∥xn+1 − yn∥

≤ Df (p, wn)− tn (Df (yn, wn) +Df (xn+1, yn))

+
σtnγn
γn+1

∥yn − wn∥ ∥xn+1 − yn∥

≤ Df (p, wn)− tn (Df (yn, wn) +Df (xn+1, yn))

+
σtnγn
2γn+1

∥yn − wn∥2 +
σtnγn
2γn+1

∥xn+1 − yn∥2

≤ Df (p, wn)− σn,

where σn = tn

(
1− σγn

κγn+1

)
Df (yn, wn) + tn

(
1− σγn

κγn+1

)
Df (xn+1, yn) .

Then the conclusion of Lemma 3.11 holds. This completes the proof. □

Lemma 3.12. Suppose that Conditions (A1) − (A4) hold. Then the sequence {xn} generated by
Algorithm 1 is bounded and lim

n→∞
Df (p, xn) exist for each p ∈ DV I (C,A).

Proof. Let p ∈ DV I (C,A). By Remark 3.2 and σ ∈ (0, κ), we have lim
n→∞

(
1− σγn

κγn+1

)
=

1 − σ
κ > 0. As a consequence, there exists n1 ∈ N such that 1 − σγn

κγn+1
> 0, ∀n ≥ n1. This

implies that

σn := tn

(
1− σγn

κγn+1

)
Df (yn, wn) + tn

(
1− σγn

κγn+1

)
Df (xn+1, yn) ≥ 0, ∀n ≥ n1.

By the definition of wn and f is Legendre, we have

(3.11) ∇f (wn) = (1− αn)∇f (xn) + αn∇f (wn−1) .

Thus

(3.12) ∇f (xn) =
1

1− αn
∇f (wn)−

αn

1− αn
∇f (wn−1) .

It follows from (3.12) and the Property (c) of the Bregman distance that
(3.13)

Df (p, xn) =
1

1− αn

(
Df (p, wn)−Df (xn, wn)

)
− αn

1− αn

(
Df (p, wn−1)−Df (xn, wn−1)

)
.

Combining (3.13) with (3.10), we can get

(3.14)
Df (p, xn+1)−Df (p, xn) ≤ − αn

1− αn
Df (p, wn) +

αn

1− αn
Df (p, wn−1)

+
1

1− αn
Df (xn, wn)−

αn

1− αn
Df (xn, wn−1)− σn.

It follows from (3.14) and 0 < αn+1 ≤ αn < 1 that
(3.15)
Df (p, xn+1) +

αn+1

1− αn+1
Df (p, wn) ≤ Df (p, xn+1) +

αn

1− αn
Df (p, wn)

≤ Df (p, xn) +
αn

1− αn
Df (p, wn−1)

+
1

1− αn
Df (xn, wn)−

αn

1− αn
Df (xn, wn−1)− σn.
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Setting

an := Df (p, xn) +
αn

1− αn
Df (p, wn−1)

and
bn := − 1

1− αn
Df (xn, wn) +

αn

1− αn
Df (xn, wn−1) + σn.

We infer that
an+1 ≤ an − bn.

It follows from (3.11) and the Property (c) of the Bregman distance that
(3.16)
Df (xn, wn) = (1− αn) (Df (xn, xn)−Df (wn, xn)) + αn (Df (xn, wn−1)−Df (wn, wn−1))

= − (1− αn)Df (wn, xn) + αn (Df (xn, wn−1)−Df (wn, wn−1))

≤ αnDf (xn, wn−1) .

This implies that

(3.17) bn = Df (wn, xn) +
αn

1− αn
Df (wn, wn−1) + σn.

It is easy that an ≥ 0 and bn ≥ 0, ∀n ≥ n1. Using Lemma 2.9, we can get lim
n→∞

bn = 0

and lim
n→∞

an exists. Thus, it follows from (3.17), 0 < a ≤ αn ≤ b < 1, tn ≥ φ1 > 0, the
definition of σn and lim

n→∞
bn = 0 that

(3.18) lim
n→∞

Df (wn, xn) = 0 = lim
n→∞

Df (wn, wn−1)

and

(3.19) lim
n→∞

Df (yn, wn) = 0 = lim
n→∞

Df (xn+1, yn) .

Since f is κ-strongly convex, we can also obtain

(3.20) lim
n→∞

∥xn − wn∥ = 0 = lim
n→∞

∥wn − wn−1∥

and

(3.21) lim
n→∞

∥yn − wn∥ = 0 = lim
n→∞

∥xn+1 − yn∥ .

Owing to (3.13) and (3.16), we have

(3.22)
an =

1

1− αn

(
Df (p, wn)−Df (xn, wn)

)
+

αn

1− αn
Df (xn, wn−1)

=
1

1− αn
Df (p, wn) +Df (wn, xn) +

αn

1− αn
Df (wn, wn−1) .

From (3.18), 0 < a ≤ αn ≤ b < 1 and lim
n→∞

an exists, it is easy to see that lim
n→∞

Df (p, wn)

exists. Thus the definition of an implies lim
n→∞

Df (p, xn) exists. Lemma 2.3 ensures that

{xn} and {wn} are bounded. We know that {yn} is bounded via (3.21). We thus complete
the proof.

□

Lemma 3.13. Assume that Conditions (A1) − (A5) are satisfied. Let {wn} and {yn} be two
sequences given by Algorithm 1. If lim

n→∞
∥wn − yn∥ = 0 and a subsequence of {wn} converges

weakly to w∗, then w∗ ∈ DV I (C,A) or Aw∗ = 0.
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Proof. The proof of Lemma 3.13 is the similar as the one of Lemma 3.4 in [46]. Thus we
omit it. □

Theorem 3.1. Let Conditions (A1)− (A5) hold. Then the sequence {xn} generated by Algorithm
1 converges weakly to some point of DV I (C,A) ⊂ V I(C,A).

Proof. Since {xn} is bounded, there exists a subsequence {xnk
} of {xn} such that xnk

⇀

z ∈ C. In view of (3.20), we have wnk
⇀ z ∈ C. It follows from Lemma 3.13 and (3.21)

that z ∈ DV I (C,A).
We now claim that xn ⇀ z. In fact it is sufficient to show that the weak cluster point

of the sequence {xn} is unique. Assume that {xmk
} is another subsequence of {xn} such

that xmk
⇀ z1 and z1 ̸= z. By utilizing the same arguments in getting z ∈ DV I (C,A), we

can obtain z1 ∈ DV I (C,A). On account of Lemma 3.12, we have lim
n→∞

Df (p, xn) exists

for each p ∈ DV I (C,A). It follows from Lemma 2.8 that

lim
n→∞

Df (z, xn) = lim
k→∞

Df (z, xnk
) = lim inf

k→∞
Df (z, xnk

)

< lim inf
k→∞

Df (z1, xnk
) = lim

n→∞
Df (z1, xn) .

In addition, in a similar way, we can get lim
n→∞

Df (z1, xn) < lim
n→∞

Df (z, xn). This leads to

a contradiction. Thus z = z1 and the sequence {xn} converges weakly to z. The proof is
finished. □

Remark 3.4. If αn = 0, that is, wn = xn, we can get the same results as Lemma 3.12. In fact,
using (3.10) and wn = xn, we have

Df (p, xn+1) ≤ Df (p, xn)− tn

(
1− σγn

κγn+1

)
(Df (yn, xn) +Df (xn+1, yn)) .

Set
an := Df (p, xn)

and

bn := tn

(
1− σγn

κγn+1

)
(Df (yn, xn) +Df (xn+1, yn)).

The next proof is similar to the proof of Lemma 3.12. We can yield the desired conclusion. Fur-
thermore, resembling the proof of Theorem 3.1, it is easy to see that if αn = 0, then the result of
Theorem 3.1 still holds.

If αn = 0 and βn = tn = 1, then Algorithm 1 becomes Algorithm 3.3 of [17]. Theorem 3.1 only
requires A is quasi-monotone and satisfies the Condition (A5) other than being pseudo-monotone
and weakly sequentially continuous as in Theorem 3.8 of [17].

Next, we show that the nonasymptotic O
(

1√
n

)
convergence rate with " min

N≤i≤n
" of Al-

gorithm 1.

Theorem 3.2. Suppose that Conditions (A1)− (A5) are satisfied. Let {xn} be a sequence gener-
ated by Algorithm 1. Then for each p ∈ DV I (C,A), there exist some constant η > 0 and N ∈ N
such that

min
N≤i≤n

∥yi − wi∥ ≤
( 2

ηκ
·
Df (p, xN ) + αN

1−αN
Df (p, wN−1)

n−N + 1

) 1
2

.
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Proof. Set η := φ1

2

(
1− σ

κ

)
. Obviously η > 0. By Remark 3.2 and σ ∈ (0, κ), we have

lim
n→∞

(
1− σγn

κγn+1

)
= 1− σ

κ > 0. As a consequence, there exists N ∈ N such that 1− σγn

κγn+1
≥

1
2

(
1− σ

κ

)
> 0, ∀n ≥ N . It follows from 0 < a ≤ αn ≤ b < 1, an+1 ≤ an−bn, (3.17), tn ≥ φ1

and the definition of σn that

an+1 ≤ an −Df (wn, xn)− αn

1−αn
Df (wn, wn−1)− σn ≤ an − tn

(
1− σγn

κγn+1

)
Df (yn, wn)

≤ an − ηDf (yn, wn) , ∀n ≥ N.

So we have
ηDf (yn, wn) ≤ an − an+1, ∀n ≥ N.

Thus

η

n∑
i=N

Df (yi, wi) ≤
n∑

i=N

(ai − ai+1) = aN−an+1 ≤ aN = Df (p, xN )+
αN

1− αN
Df (p, wN−1) .

This implies that

min
N≤i≤n

Df (yi, wi) ≤
1

η

Df (p, xN ) + αN

1−αN
Df (p, wN−1)

n−N + 1
.

Combining f is κ-strongly convex, we have

min
N≤i≤n

κ

2
∥yi − wi∥2 ≤ min

N≤i≤n
Df (yi, wi) ≤

1

η

Df (p, xN ) + αN

1−αN
Df (p, wN−1)

n−N + 1
,

which implies that

min
N≤i≤n

∥yi − wi∥ ≤
( 2

ηκ
·
Df (p, xN ) + αN

1−αN
Df (p, wN−1)

n−N + 1

) 1
2

.

This proof is finished. □

Remark 3.5. It is clear that yn = wn can imply that yn ∈ V I (C,A). This and the fact

lim
n→0

∥yn − wn∥ = 0

imply that the estimation of error provided in Theorem 3.2 can be considered as a nonasymptotic
convergence rate of Algorithm 1.

We regard that the sequence {xn} ⊂ E converges Q-linearly to some point p ∈ E

if there exists some q ∈ (0, 1) such that ∥xn+1 − p∥ ≤ q ∥xn − p∥ for all n sufficiently
large. We say that the sequence {xn} ⊂ E converges R-linearly if ∥xn − p∥ ≤ bn for all n
sufficiently large, where {bn} ⊂ R converges Q-linearly to zero.

Next, to obtain a linear convergence rate, by changing Step 3 of Algorithm 1, we get
Algorithm 2 as follows:

Algorithm 2.
Initialization: Take w0, x1 ∈ C, γ1 > 0 and σ ∈

(
0, κ

2

)
. Choose real non-negative sequences

{βn}, {tn}, {θn} and {αn} such that the following conditions hold:

(1) {βn} ⊂ [1,+∞),
∞∑

n=1
(βn − 1) < +∞ and

∞∑
n=1

θn < +∞;

(2) 0 < φ1 ≤ tn ≤ 1;
(3) 0 < a ≤ αn+1 ≤ αn ≤ b < 1.
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Iterative steps: Having xn and wn−1, compute the next iterate xn+1 as follows:

Step 1. Compute
wn = ∇f∗ ((1− αn)∇f (xn) + αn∇f (wn−1)) .

Step 2. Compute
yn = P f

C (∇f∗ (∇f (wn)− γnAwn))) .

Step 3. Compute
xn+1 = ∇f∗ (tn∇f (yn)− (tn − 1)∇f (wn)) ,

where

(3.23) γn+1 =

min
{

σ∥wn−yn∥
∥Awn−Ayn∥ , βnγn + θn

}
, if Awn ̸= Ayn,

βnγn + θn, otherwise.

Update n and go to the iterative step.

Remark 3.6. Assume that the mapping A : E → E∗ is Lipschitz continuous with L > 0. Let
{γn} be the sequence generated by (3.23), using the similar proof as in Remark 3.2, we have

lim
n→∞

γn = γ ≥ min
{σ

L
, γ1

}
.

We first assume that, for some β > 0, the mapping A satisfies

(3.24) ⟨Ax, y − x⟩ ≥ 0 ⇒ ⟨Ay, y − x⟩ ≥ βDf (x, y) ,∀x ∈ domf, y ∈ int(domf).

If we take f (x) = x log(x) and Ax = ex, then (3.24) holds. Indeed, if x, y > 0 satisfy
⟨Ax, y − x⟩ ≥ 0, then we have y ≥ x. Hence

⟨Ay, y − x⟩ = ey (y − x) ≥ y − x ≥ Df (x, y) = x log
(x
y

)
+ y − x.

In addition, if f (x) = 1
2∥x∥

2, then (3.24) reduces to the case that A is a β-strongly pseudo-
monotone mapping, which has been frequently used in the literature, see [31, 43, 49].

Theorem 3.3. Assume Conditions (A1) − (A4) hold and the mapping A satisfies (3.24) with
β > 1

2min{ σ
L ,γ1} . Let {xn} be a sequence generated by Algorithm 2. Then {xn} converges R-

linearly to p, where p ∈ V I (C,A).

Proof. Since f is κ-strongly convex and satisfies (3.24), the mapping A is a βκ
2 -strongly

pseudo-monotone mapping. This yields V I(C,A) has no more than one solution, see
[21]. Lemma 2.1 implies that there exists p ∈ DV I(C,A) = V I(C,A).

By the definition of yn, yn ∈ C, p ∈ V I (C,A) and Lemma 2.4, we have

⟨∇f (wn)− γnAwn −∇f (yn) , p− yn⟩ ≤ 0.

Combing the three-point identity, we can get

(3.25)
γn ⟨Awn, yn − p⟩ ≤ ⟨∇f (wn)−∇f (yn) , yn − p⟩

= Df (p, wn)−Df (p, yn)−Df (yn, wn) .
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It follows from (3.24), the κ-strong convexity of f and the definition of γn that

(3.26)

⟨γnAwn, p− yn⟩ = γn ⟨Awn −Ayn, p− yn⟩+ γn ⟨Ayn, p− yn⟩

≤ γn ∥Awn −Ayn∥ ∥p− yn∥ − βγnDf (p, yn)

≤ σγn
γn+1

∥wn − yn∥ ∥p− yn∥ − βγnDf (p, yn)

≤ σγn
2γn+1

(
∥wn − yn∥2 + ∥p− yn∥2

)
− βγnDf (p, yn)

≤ σγn
κγn+1

(Df (yn, wn) +Df (p, yn))− βγnDf (p, yn) .

Combining (3.25) and (3.26), we can get

Df (p, wn)−Df (p, yn)−Df (yn, wn) ≥
(
βγn − σγn

κγn+1

)
Df (p, yn)−

σγn
κγn+1

Df (yn, wn) ,

thus yields

(3.27)
(
1− σγn

κγn+1
+ βγn

)
Df (p, yn) ≤ Df (p, wn)−

(
1− σγn

κγn+1

)
Df (yn, wn) .

By β > 1

2min{ σ
L ,γ1} and Remark 3.6, we have lim

n→∞

(
1− σγn

κγn+1

)
= 1−σ

κ > 1
2 and lim

n→∞
βγn =

βγ > 1
2 . This implies that there exists N ∈ N and some number τ ∈

(
1
2 ,min{1 − σ

κ , βγ}
)

satisfying

1− σγn
κγn+1

> τ, ∀n ≥ N,

and

βγn > τ, ∀n ≥ N.

Therefore, we have

(3.28) 2τDf (p, yn) ≤ Df (p, wn) , ∀n ≥ N.

It follows from the definition of xn+1, tn ∈ (0, 1] and the Property (c) of the Bregman
distance that
(3.29)
Df (p, xn+1) = tn (Df (p, yn)−Df (xn+1, yn)) + (1− tn) (Df (p, wn)−Df (xn+1, wn))

≤ tnDf (p, yn) + (1− tn)Df (p, wn) .

Combining 1 ≥ tn ≥ φ1 > 0, τ > 1
2 , (3.28) and (3.29), we can get

(3.30) Df (p, xn+1) ≤
(
tn
2τ

+ 1− tn

)
Df (p, wn) ≤

(φ1

2τ
+ 1− φ1

)
Df (p, wn) , ∀n > N.

Shifting the index in (3.13) (by taking n ≡ n+ 1) and rearranging terms, we have

(3.31)
Df (p, xn+1) =

1

1− αn+1
Df (p, wn+1)−

αn+1

1− αn+1
Df (p, wn)

+
αn+1

1− αn+1

(
Df (xn+1, wn)−

1

αn+1
Df (xn+1, wn+1)

)
.
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Shifting the index in (3.16) (by taking n ≡ n+ 1) and combing (3.31) and 0 < a ≤ αn+1 ≤
αn ≤ b < 1, we have

(3.32) Df (p, xn+1) ≥
1

1− αn+1
Df (p, wn+1)−

αn+1

1− αn+1
Df (p, wn) .

Using (3.30) and (3.32), we can get

Df (p, wn+1) ≤
((

φ1 −
φ1

2τ

)
αn+1 +

φ1

2τ
+ 1− φ1

)
Df (p, wn) , ∀n ≥ N.

Due to 0 < a ≤ αn ≤ b < 1, we can get

Df (p, wn+1) ≤
((

φ1 −
φ1

2τ

)
b+

φ1

2τ
+ 1− φ1

)
Df (p, wn) , ∀n ≥ N.

It follows from (3.30), the κ-strong convexity of f and the above inequality that
υκ

2
∥p− xn+2∥2 ≤ υDf (p, xn+2) ≤ Df (p, wn+1) ≤ ρDf (p, wn) ≤ . . . ≤ ρn−N+1Df (p, wN ) ,

where υ = 1
φ1
2τ +1−φ1

and ρ =
(
φ1 − φ1

2τ

)
b+ φ1

2τ + 1− φ1. Thanks to 1 ≥ φ1 > 0, τ > 1
2 and

0 < b < 1, we can find that υ > 0 and 0 < ρ < 1. Consequently, {xn} converges R-linearly
to p. □

Theorem 3.4. Assume Conditions (A1)− (A4) hold and the mapping A satisfies (3.24). Let the
step size sequence γn = ℓn satisfying lim

n→∞
ℓn = ℓ ∈

(
0, κ

L

)
and ℓn ≥ 0, ∀n ∈ N, and κ > L

β .
Then {xn} generated by Algorithm 2 converges R-linearly to p, where p ∈ V I (C,A).

Proof. it follows from (3.24), the κ-strong convexity of f and the definition of ℓn that

(3.33)

⟨ℓnAwn, p− yn⟩ = ℓn ⟨Awn −Ayn, p− yn⟩+ ℓn ⟨Ayn, p− yn⟩

≤ ℓn ∥Awn −Ayn∥ ∥p− yn∥ − βℓnDf (p, yn)

≤ Lℓn ∥wn − yn∥ ∥p− yn∥ − βℓnDf (p, yn)

≤ Lℓn
2

(
∥wn − yn∥2 + ∥p− yn∥2

)
− βℓnDf (p, yn)

≤ Lℓn
κ

(Df (yn, wn) +Df (p, yn))− βℓnDf (p, yn) .

Combining (3.25) and (3.33), we can get(
1− Lℓn

κ
+ βℓn

)
Df (p, yn) ≤ Df (p, wn)−

(
1− Lℓn

κ

)
Df (yn, wn) .

By lim
n→∞

ℓn = ℓ ∈
(
0, κ

L

)
and κ > L

β , we have

lim
n→∞

(
1− Lℓn

κ

)
= 1− Lℓ

κ > 0 and lim
n→∞

(
βℓn + 1− Lℓn

κ

)
= βℓ+ 1− Lℓ

κ > 1.

This implies that there exists N ∈ N and some number τ ∈ ( 12 ,
1
2

(
βℓ+ 1− Lℓ

κ

)
) satisfying

βℓn + 1− Lℓn
κ

> 2τ, ∀n ≥ N.

Therefore, we have
2τDf (p, yn) ≤ Df (p, wn) , ∀n ≥ N.

The rest of the proof now follows the same arguments as those used in the proof of Theo-
rem 3.3, so we omit it. We obtain this conclusion. □
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Remark 3.7. From Theorem 3.4, it follows that the upper boundary of the limitation of the step
size sequence γn = ℓn is controlled by κ

L . Note that if L is too large, then the step sizes become
correspondingly small, which may affect the convergence rate of Algorithm 2, see Example 4.3.
Therefore, in Algorithm 2 we sometimes still adopt the adaptive step sizes defined by (3.23), though
we need know the Lipschitz constant L of the mapping A in advance by Theorem 3.3.

Remark 3.8. As far as we know, Bregman projection algorithms using the golden ratio technique
for solving variational inequalities do not have a linear convergence result in reflexive Banach
spaces. Theorem 3.3 presents a new discovery in this regard.

Additionally, if αn = 0, that is, wn = xn, then {xn} also converges R-linearly to p. In fact, it
follows from wn = xn and (3.30) that

Df (p, xn+1) ≤
(φ1

2τ
+ 1− φ1

)
Df (p, xn) ,∀n > N.

This means that

Df (p, xn+1) ≤
(φ1

2τ
+ 1− φ1

)
Df (p, xn) ≤ . . . ≤

(φ1

2τ
+ 1− φ1

)n−N+1

Df (p, xN ) .

Combining 1 ≥ φ1 > 0 and τ > 1
2 , we have 0 < φ1

2τ + 1− φ1 < 1 and so we can get the sequence
{xn} converges R-linearly to p.

4. NUMERICAL EXPERIMENTS

In this section, we showcase three numerical experiments for our proposed algorithm
to illustrate its performance. We conduct all computations using Matlab 2023(b) on a PC
equipped with 8.00GB RAM. Let "Iter" denote number of iteration and "Time" denote the
CPU time in seconds.

Example 4.1. Consider E = l2 =

{
x = (x1, x2, . . .) :

∞∑
i=1

|xi|2 < ∞
}

with C = {x ∈ l2 : ∥x∥ ≤ 2}

and f (x) = 1
2∥x∥

2. The Bregman distance associated with f is referred to as Euclidean distance
given by Df (x, y) =

1
2∥x− y∥2. Then we have

P f
C (x) =

2

max {∥x∥ , 2}
x,

and define
Ax := (3− ∥x∥)x.

Then A is quasi-monotone on C and L-Lipschitz continuous on E with DV I(C,A) = {0}, for
more details, see [1].

In this experiment, we compare our Algorithm 1 (namely, Alg1) with the Algorithms 1 and
2 (namely, wAlg1 and wAlg2) of Wang et al. [46], and the Algorithm 3.12 (namely, AMAlg)
of Alakoya et al. [1]. The termination condition for the test is En = ∥xn − 0∥2 < 10−8. The
parameters of each algorithm are set as follows:
• Alg1: tn = 1 − 1

n3+2 , αn = 1
16.8 + 1

3n2 , σ = 0.29, θn = 2
7n2+1 , γ1 = 1.4, βn = 1 + 1

n
√
n

and w0 = x1 = (0.2, 0.2, . . . , 0.2︸ ︷︷ ︸
m

, 0, . . . , 0, . . .);

• wAlg1: β = 0.9, δ = 0.9, µ = 0.9, pn = 0, ξn = 0.1
n2 , λ1 = 1 and
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x0 = x1 = (0.2, 0.2, . . . , 0.2︸ ︷︷ ︸
m

, 0, . . . , 0, . . .);

• wAlg2: β = 0.9, δ = 0.9, µ = 0.9, pn = 0, ξn = 0.1
n2 , λ1 = 1 and

x0 = x1 = (0.2, 0.2, . . . , 0.2︸ ︷︷ ︸
m

, 0, . . . , 0, . . .);

• AMAlg: λ0 = 0.9, θ = 0.8, µ = 0.6, ρn = 1000
(n+1)2

, f(x) = x
3 , αn = 1

2n , ξn = 1
(2n+1)3

and
x0 = x1 = (0.2, 0.2, . . . , 0.2︸ ︷︷ ︸

m

, 0, . . . , 0, . . .).

The results of experiments are reported in Table 1 and Figure 1.

TABLE 1. Numerical results of Example 4.1.

m Alg1 wAlg1 wAlg2 AMAlg
Iter Iter Iter Iter

510 38 49 64 53
520 37 49 63 40
540 28 50 60 56

FIGURE 1. Numerical behaviour of En for Example 4.1, Top left: m=510;
Top right: m=520; Bottom: m=540.

Remark 4.9. It is clear from Table 1 and Figure 1 that our proposed algorithm has superior con-
vergence regarding iteration counts to the referenced algorithms.
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Example 4.2. Consider E = Rm with

C =

{
x = (x1, x2, . . . , xm)⊤ ∈ Rm : xi ≥

1

2
√
m

and
m∑
i=1

x2
i ≤ 1, i = 1, 2, . . . ,m

}

and the negative entropy f (x) =
m∑
i=1

xi log (xi), xi > 0. Then

∇f (x) = (1 + log (x1) , . . . , 1 + log (xm))
⊤

and

∇f∗ (x) =
(
ex1−1, . . . , exm−1

)⊤
The Bregman distance associated with f is referred to as KL divergence given by Df (x, y) =
m∑
i=1

xi log
(

xi

yi

)
+ yi − xi. Here, we employ the function fmincon in Optimization Toolbox of

MATLAB for computing Bregman projection onto C. The mapping A : E → E is defined by

Ax = F1 (x) + F2 (x) ,

F1 (x) = (h1 (x) , h2 (x) , . . . , hm (x)) ,

F2 (x) = Dx+ d,

hi (x) = x2
i−1 + x2

i + xi−1xi + xixi+1, i = 1, 2, . . . ,m,

x0 = xm+1 = 0,

where d = (−1,−1, . . . ,−1)
⊤ and Dm×m given by

Dij =


4 if i = j,

1 if i = j + 1,

−2 if j = i+ 1,

0 otherwise.

Then A is pseudo-monotone and L-Lipschitz continuous, see [37]. Many authors have taken into
consideration the variational inequality with A and C, see [14, 46].

In this experiment, we compare our Algorithm 1 (namely, Alg1) with the Algorithm 1 and Al-
gorithm 2 (namely, wAlg1 and wAlg2) of Wang et al. [46], Algorithm 3.1 (namely, LYAlg) of Liu
and Yang [25]. To terminate the iterations, all algorithms use En = ∥xn+1 − xn∥2 < 10−8. The
parameters of each algorithm are set as follows:
• Alg1: tn = 1

n2 , αn = 1
1.65 + 1

3n2 , σ = 0.99, θn = 2
7n2+1 , γ1 = 1, βn = 1 + 1

n
√
n

and

w0 = x1 = (0.1, 0.1, . . . , 0.1)
⊤;

• wAlg1: β = 0.9, δ = 0.9, µ = 0.9, pn = 0, ξn = 0.1
n2 , λ1 = 1 and x0 = x1 =

(0.1, 0.1, . . . , 0.1)
⊤;

• wAlg2: β = 0.9, δ = 0.9, µ = 0.85, pn = 0, ξn = 0.1
n2 , λ1 = 1 and x0 = x1 =

(0.1, 0.1, . . . , 0.1)
⊤;

• LYAlg: µ = 0.5, pn = 100
(n+1)1.1

, λ0 = 1 and x1 = (0.1, 0.1, . . . , 0.1)
⊤.

The results of experiments are reported in Table 2 and Figure 2.

Remark 4.10. From Table 2 and Figure 2, we see that our method outperforms all other methods
based on the negative entropy function.
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TABLE 2. Numerical results of Example 4.2.

m Alg1 wAlg1 wAlg2 LYAlg
Iter Iter Iter Iter

35 17 23 26 43
45 18 24 26 39
55 19 24 26 35

FIGURE 2. Numerical behaviour of En for Example 4.2, Top left: m=35;
Top right: m=45; Bottom: m=55.

Example 4.3. Let E = R3 with

C =
{
x = (x1, x2, x3)

⊤ ∈ R3 : x1 + x2 + x3 = 0,−5 ≤ xi ≤ 5, i = 1, 2, 3
}
.

Let f (x) = 1
2∥x∥

2 and

Ax =
(
e−∥x∥2

+ 10
)
Mx,

where

M =

 1.7 0 0

0 1.71 0

0 0 1.69

 .

Then A is θ-strongly pseudo-monotone on E with θ ≈ 10λmin ≈ 16.9, where λmin is the smallest
eigenvalue of M (see [43]), and A is L-Lipschitz continuous on E with L ≈ 32.39 (by ∥∇Ax∥ ≤
L, ∀x ∈ E), and we can know V I(C,A) = {0}.
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Firstly, we consider two cases of step size for Algorithm 2, which are simply denoted as Alg21
and Alg22, respectively, and compare them with Algorithm 1 (namely, SEMGR) of Oyewole and
Reich [31], and RIPA of Vuong [43]. Our termination criterion is En = ∥xn − 0∥2 < 10−50. The
parameters of each algorithm are set as follows:
• RIPA: ρ = 1.26, θ = 0, η = 1.5, λ = 1.99θ

ηL2 and x0 = x1 = (−3, 2, 3)
⊤;

• SEMGR: φ = 150, µ = 0.45, δn = 2
7n2+1 , λ1 = 0.07, βn = 1 + 1

n
√
n

and w0 = x1 =

(−3, 2, 3)
⊤;

•Alg21: tn = 1 − 2
2n4+1 , αn = 1

150 + 1
150n5 , σ = 0.4998, θn = 2

2n2+1 , γ1 = 1, βn = 1 + 1
n2

and w0 = x1 = (−3, 2, 3)
⊤;

•Alg22: tn = 1− 2
2n4+1 , αn = 1

150 + 1
150n5 , γn = 1

L

(
19
20 − 4

5n

)
and w0 = x1 = (−3, 2, 3)

⊤.
The results of experiments are reported in Table 3 and Figure 3.

TABLE 3. Numerical results of Example 4.3.

RIPA SEMGR Alg21 Alg22
Iter 88 124 15 84

Time 0.0183 0.0752 0.0068 0.0162

FIGURE 3. Numerical behaviour for Example 4.3, Left: En versus Iter;
Right: Iter versus σ in Alg21.

Remark 4.11. Table 3 and Figure 3 (left) display Alg21 outperforms Alg22, whose reason may
be the Lipschitz constant L of A is too large. As can be shown in Table 3 and Fig. 3, Algorithm
2 is far better than SEMGR of [31] and RIPA of [43]. Next, we take tn = 1 − 2

2n4+1 , αn =
1

150 + 1
150n5 , θn = 2

2n2+1 , γ1 = 1, βn = 1 + 1
n2 , w0 = x1 = (−3, 2, 3)

⊤, En = ∥xn − 0∥2 <

10−50, f (x) = 1
2∥x∥

2, and consider the influence of different σ on the performance of Algorithm
2. The numerical behavior is shown in Figure 3 (right).

5. CONCLUSIONS

To address variational inequalities in reflexive Banach spaces, two Bregman projection
algorithms with a new extrapolation technique are introduced. The weak convergence
and non-asymptotic O

(
1√
n

)
convergence rate of the Algorithm 1 are established under
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appropriate and mild assumptions. The linear convergence rate of Algorithm 2 is proved.
Our results have the following benefits advantages:

(i) Algorithm 1 and Algorithm 2 both have non-monotone adaptive step sizes that
only need a simple calculation of known information, eliminate the limitation of
the Lipschitz constant of A and lessen the dependence on the initial point.

(ii) Instead of being pseudo-monotone and weakly sequentially continuous, like in
Theorem 3.8 of [17], Theorem 3.1 only requires A is quasi-monotone and satisfies
the Condition (A5). Particularly, to the best of our knowledge, Bregman projec-
tion algorithms with the golden ratio technique for solving variational inequalities
have no linear convergent result in reflexive Banach spaces. Theorem 3.3 and The-
orem 3.4 are new results.

(iii) Different from the inertial acceleration, Step 1 of Algorithm 1 and Algorithm 2
is an extension of the golden ratio technique which can also speed up the conver-
gence of algorithms, see [31, 49]. Our Algorithms 1 and 2 have been tested through
numerical experiments and have shown to be more efficient than the correspond-
ing algorithms presented in [1, 25, 31, 43, 46].
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