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Unit neighborhoods of zero in topological ordered rings

FRANCISCO JAVIER GARCÍA-PACHECO1

ABSTRACT. A closed unit neighborhood of zero in a topological ring is an additively symmetric and multi-
plicatively idempotent regular closed neighborhood of zero containing the unity whose interior is multiplica-
tively idempotent as well. The search for nontrivial closed unit neighborhoods of zero in topological rings is an
ongoing quest. A unital ordered ring is a ring endowed with a partial ordering compatible with the addition and
multiplication by positive elements for which zero and the unity are comparable. A topological ordered ring is a
unital ordered ring for which the order topology is a ring topology. Recently, it was posed the question whether
the set of elements lying in between −1 and 1 is a closed unit neighborhood of 0 in a topological ordered ring.
This question has been partially solved on topological totally ordered division rings with no holes. Here, we
provide a full answer in topological ordered rings (not relying on total orderings nor on division rings).

1. INTRODUCTION

A unit ball in a topological ring is an additively symmetric and multiplicatively idem-
potent closed neighborhood of zero containing the unity [8, Definition 1]. There are plenty
of examples of topological rings endowed with a unit ball, ranging from {−1, 0, 1} in a dis-
crete ring thru the whole ring (which is the unique unit ball if the ring is endowed with
the trivial topology). The study of this kind of Banach-space-like structures in topological
rings and modules is each passing time more popular [11, 7, 10, 9, 12, 13, 14].

A particular case of unit balls are the closed unit neighborhoods of zero [4]. Let R be a
topological ring. Let U,B be subsets of R. Then U is called an open unit neighborhood of
0 provided that U is an additively symmetric (U = −U) and multiplicatively idempotent
(UU = U ) regular open (int(cl(U)) = U ) neighborhood of 0 such that 1 ∈ cl(U). On
the other hand, B is called a closed unit neighborhood of 0 provided that B is regular
closed (cl(int(B)) = B) and its interior is an open unit neighborhood of 0. Observe that,
if U is an open unit neighborhood of 0, then cl(U) is a closed unit neighborhood of 0.
Alternatively (and by definition), if B is a closed unit neighborhood of 0, then int(B) is an
open unit neighborhood of 0. In [4, Theorem 3.7], it is proved that the only proper closed
unit neighborhood of 0 in R is [−1, 1] and the only proper closed unit neighborhood of 0
in C containing the unit complex numbers T is the closed unit disk D. In [15], other proper
closed unit neighborhoods of 0 in C are provided.

Every ring of characteristic 0 can be easily endowed, via Zorn’s Lemma, with a unital
ring ordering (partial ordering compatible with addition and multiplication by positive
elements, for which 0 and 1 are comparable). A topological ordered ring is a unital or-
dered ring for which the order topology is a ring topology [5, Definition 2.11]. The main
question here is to determine whether, in a topological ordered ring, the set of elements
lying between −1 and 1 is a closed unit neighborhood of 0. This question was partially
answered in [3, Theorem 3.8] for topological totally ordered division rings with no holes.
Here, we will provide a full answer by not relying on total orderings nor on division rings.
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2. PRELIMINARIES

The following notation on posets will be used throughout the manuscript: If A is a
poset and a, b ∈ A, then ↑a := [a,∞) := {x ∈ A : a ≤ x}, ↓b := (−∞, b] := {x ∈ A : x ≤ b},
↑×a := (a,∞) := {x ∈ A : a < x} and ↓×b := (−∞, b) := {x ∈ A : x < b}. The classical
notation for bounded intervals will also be employed.

All rings considered in this manuscript are assumed to be associative and unitary (and
nonzero). All subrings will be considered unitary subrings in the sense that they share the
unity of the ring. An ordered ring is a ring R endowed with a partial order ≤ compatible
with the addition and multiplication operations, that is, for all r, s ∈ R such that r ≤ s,
then r + t ≤ s + t for all t ∈ R (translation invariance) and rs ∈ R+ for all r, s ∈ R+

(homotecy invariance), where R+ := ↑ 0 = {t ∈ R : t ≥ 0}. Observe that, if 0, 1 are
comparable, then char(R) = 0, that is, R has characteristic 0 (such ring orderings are
called unital). Conversely, by relying on Zorn’s Lemma, any ring of characteristic 0 can
be endowed with a maximal unital ring ordering. From now on, we will only consider
unital ring orderings. We will also let R− := ↓0 = {a ∈ R : a ≤ 0} = −R+. Other basic
properties of ordered rings will be recalled as long as they are required for the proofs of
the main results of this work.

The order topology is typically defined for totally ordered sets with at least two points.
However, it can also be transported to posets with a more subtle construction. If X is a set
and S is a nonemtpy subset of P(X) (power set of X), then the set of finite intersections
of S, B(S) :=

{⋂
T∈T T : T ⊆ S finite

}
, is trivially closed under finite intersections, thus

B(S) is a base for a topology on X if and only if
⋃

S∈S S = X . As a consequence, if X is a
poset, then {↑×x, ↓×x : x ∈ X} is a subbase for a topology on X if and only if for every x ∈
X either ↑×x ̸= ∅ or ↓×x ̸= ∅. In this situation, the order topology on X is the topology
generated by the subbase {↑×x, ↓×x : x ∈ X} and we call X a topological poset. There
are different ways to construct the order topology in those posets X having incomparable
elements with all the rest (those elements x ∈ X satisfying that ↑×x = ↓×x = ∅). One
way is by considering the subbase {↑×x, ↓×x : x ∈ X} ∪ {X}. Nevertheless, posets with
incomparable elements with all the rest will not be the case of this work. It is immediate
to observe that open intervals are open in the order topology, however closed intervals
are not necessarily closed in the order topology, unless, for instance, the order is total (see
Lemma 3.2).

We point out that in unital ordered rings, the order topology is always well defined.
Indeed, if R is a unital ordered ring, then r + 1 ∈ ↑× r and r − 1 ∈ ↓× r for all r ∈ R,
meaning that there are not elements incomparable with all the rest in R.

Sometimes ring topologies are assumed to have continuous multiplicative inversion
by default (like, for instance, in [7]) due to the fact that some technical lemmas need such
continuity (see [7, Lemma 1] or [6, Lemma 2.4]). However, in classical Associative Ring
Theory [1, 16, 17, 2], continuity of the inversion is not generally assumed (except for topo-
logical division rings). On topological rings for which inversion is not continuous, it is
often considered a special group topology on its multiplicative group of invertibles. Let
R be a topological ring whose inversion is not continuous. Let U(R) stand for the multi-
plicative group of invertibles of R. Then {U(V ) : V is a 0-neighborhood in R} is a base for
a group topology on U(R), where U(V ) :=

{
r ∈ U(R) : r, r−1 ∈ 1 + V

}
, for every neigh-

borhood V of 0 in R. Here, in this manuscript, we will not assume the continuity of the
inversion by default and we will explicitly call on it when necessary.

The following definition can be found in [5, Definition 2.11] (although it was originally
coined in [3]).
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Definition 2.1 (Topological ordered ring). Let R be a unital ordered ring. If the order topology
on R is a ring topology, then we call R a topological ordered ring.

Notice that not every order topology on a unital ordered ring is a ring topology. Indeed,
let R := R[x] and define p ≤ q whenever p = q or the leading coefficient of q−p is positive.
According to the properties of ring topologies, for every neighborhood V of 0 in R and
every r ∈ R there exists another neighborhood W of 0 in R satisfying that rW ⊆ V , which
cannot hold for r := x and V := (−1, 1).

The following question was posed in [3].

Question 1. Let R be a topological ordered ring. Is [−1, 1] a closed unit neighborhood of 0?

Question 1 was partially answered in [3, Theorem 3.8] for topological totally ordered
division rings with no holes. Here, we will provide a full answer in Theorem 3.1 by not
relying on total orderings nor on division rings.

3. MAIN RESULT

In [7, Proposition 1] it was proved that a unit ball in a topological ring is a closed unit
neighborhood of zero if and only if it is regular closed and its interior is multiplicatively
idempotent. Observe that, if R is a topological ordered ring such that [−1, 1] is closed,
then [−1, 1] is trivially a unit ball. Therefore, in order to achieve our goal, it only suffices
to check that int([−1, 1]) = (−1, 1), cl((−1, 1)) = [−1, 1] and (−1, 1)(−1, 1) = (−1, 1). In
other words, we have the following initial result.

Proposition 3.1. Let R be a topological ordered ring. If int([−1, 1]) = (−1, 1), cl((−1, 1)) =
[−1, 1] and (−1, 1)(−1, 1) = (−1, 1), then [−1, 1] is a closed unit neighborhood of 0 and (−1, 1)
is an open unit neighborhood of 0.

Proof. By assumption, [−1, 1] is closed, therefore it is a unit ball since it is trivially ad-
ditively symmetric, multiplicatively idempotent and contains 1. Also, by assumption,
[−1, 1] is regular closed and its interior is multiplicatively idempotent. By [7, Proposition
1], [−1, 1] is a closed unit neighborhood of 0. □

The following technical lemma is just a direct consequence of the basic properties sat-
isfied by unital ring orderings.

Lemma 3.1. Let R be a unital ordered ring. Then (−1, 1)(−1, 1) ⊆ (−1, 1).

Proof. it only suffices to check that (0, 1)(0, 1) ⊆ [0, 1). Fix arbitrary elements r, s ∈ (0, 1).
We definition of ring ordering, rs ≥ 0. Finally, r < 1 and s > 0 meaning that rs ≤ s <
1. □

Next technical lemma allows a sufficient condition to assure that closed intervals are
closed in the order topology. Recall that in a poset X , the set of incomparable elements to
a certain x ∈ X is denoted by θx.

Lemma 3.2. Let X be a topological poset. Let x ∈ X . Then:
(1) If θx is cofinal in itself, then ↑x is closed.
(2) If θx is coinitial in itself, then ↓x is closed.

Proof. Only the first item will be proved. Notice that X\ ↑x = ↓×x ∪ θx. We will show
that ↓×x ∪ θx is open by showing that it is a neighborhood of each of its points. Indeed,
fix an arbitrary y ∈ ↓× x ∪ θx. If y ∈ ↓× x, then y ∈ ↓× x ⊆ ↓× x ∪ θx, so ↓× x ∪ θx
is a neighborhood of y by definition of order topology. Next, assume that y ∈ θx. By
hypothesis, θx is cofinal in itself, meaning that there exists z ∈ θx such that y < z. Let us
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prove that y ∈ ↓×z ⊆ ↓×x∪θx. Take any w ∈ ↓×z. If w is not comparable to x, then w ∈ θx.
If w is comparable to x, then we have two options. One is that x ≤ w, which implies that
x ≤ w < z contradicting the fact z is not comparable to x. This only leaves the other
option, that is, w < x, meaning that w ∈ ↓×x. As a consequence, y ∈ ↓× z ⊆ ↓×x ∪ θx.
This shows that X\ ↑x = ↓× x ∪ θx is open because it is a neighborhood of each of its
points. □

A direct consequence of Lemma 3.2 is the fact that if all the sets of incomparable el-
ements are coinitial and cofinal in themselves, then all closed intervals are closed in the
order topology. On the other hand, recall that a poset Y is said to be downward directed
provided that for every y1, y2 ∈ Y there exists y3 ∈ Y with y3 ≤ y2 and y3 ≤ y1. In a
similar way, upward directed is defined.

Lemma 3.3. Let X be a topological poset. If x0 ∈ X satisfies that ↑× x0 ̸= ∅ is downward
directed and ↓×x0 ̸= ∅ is upward directed, then {(a, b) : a < x0 < b} is a base of neighborhoods
of x0 for the order topology.

Proof. Let W ⊆ X be an x0-neighborhood for the order topology. There can be found
a1, . . . , an, b1, . . . , bm ∈ X satisfying that x0 ∈ ↑×a1 ∩ · · · ∩ ↑×an ∩ ↓×b1 ∩ · · · ∩ ↓×bm ⊆ W .
Observe that ai < x0 and bj > x0 for all i ∈ {1, . . . , n} and all j ∈ {1, . . . ,m}. Since
↓×x0 is upward directed, there exists a0 ∈ ↓×x0 such that a0 ≥ ai for all i ∈ {1, . . . , n}.
Similarly, since ↑×x0 is downward directed, there exists b0 ∈ ↑×x0 such that b0 ≤ bj for
all j ∈ {1, . . . ,m}. Finally, notice that x0 ∈ (a0, b0) ⊆ ↑×a1 ∩ · · · ∩ ↑×an ∩ ↓×b1 ∩ · · · ∩ ↓×
bm ⊆ W . □

From now on, we will only work with topological posets X for which ↑× x0 is not
empty and downward directed and ↓× x0 is not empty and upward directed, for every
x0 ∈ X .

Remark 3.1. Let R an unital ordered ring. On the one hand, for every r ∈ R, ↑×r and ↓×r are
not empty. Indeed, note that −1 < 0 < 1 meaning that −1 + r < r < 1 + r, hence ↑×r ̸= ∅
and ↓×r ̸= ∅. On the other hand, it is clear that ↑×0 is upward directed and ↓×0 is downward
directed. As a consequence, for every r ∈ R+, ↑×r is upward directed, and for every r ∈ R−, ↓×r
is downward directed.

In order to apply Lemma 3.3, we will be interested in unital ring orderings for which
↑×r is downward directed and ↓×r is upward directed for all r ∈ R. Recall that a poset X
is said to be hole free provided that for every x, y ∈ X with x < y, there exists z ∈ X with
x < z < y.

Lemma 3.4. Let X be a topological poset. Let a, b ∈ X with a < b. If ↑×b ̸= ∅ and is downward
directed, and ↑b is hole free, then b /∈ int([a, b]). Similarly, if ↓×a ̸= ∅ and is upward directed,
and ↓a is hole free, then a /∈ int([a, b]).

Proof. We will only show that if ↑×b ̸= ∅ and is downward directed, and ↑b is hole free,
then b /∈ int([a, b]). Indeed, assume on the contrary that b ∈ int([a, b]). There exists W ⊆ X
a b-neighborhood for the order topology contained in [a, b]. There are three possibilities:

• There are a1, . . . , an ∈ X satisfying that b ∈ ↑× a1 ∩ · · · ∩ ↑× an ⊆ W . Then
↑×b ⊆ ↑×a1 ∩ · · · ∩ ↑×an ⊆ W . By hypothesis, ↑×b ̸= ∅, so if we take b0 ∈ ↑×b,
then b0 > b so we reach the contradiction that b0 ∈ ↑×b ⊆ ↑×a1 ∩ · · · ∩ ↑×an ⊆
W ⊆ [a, b].

• There are a1, . . . , an, b1, . . . , bm ∈ X satisfying that b ∈ ↑× a1 ∩ · · · ∩ ↑× an ∩ ↓×
b1 ∩ · · · ∩ ↓× bm ⊆ W . By hypothesis, ↑× b ̸= ∅ and is downward directed, thus
there exists b0 ∈ ↑×b such that b0 ≤ bj for each j = 1, . . . ,m. Again, by hypothesis,
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↑b is hole free, meaning that there exists c ∈ ↑b with b < c < b0. Then we reach the
contradiction that c ∈ ↑×a1 ∩ · · · ∩ ↑×an ∩ ↓×b1 ∩ · · · ∩ ↓×bm ⊆ W ⊆ [a, b].

• There are b1, . . . , bm ∈ X satisfying that b ∈ ↓×b1 ∩ · · · ∩ ↓×bm ⊆ W . It follows the
same proof as right above.

□

Next lemma is technically similar to Lemma 3.4.

Lemma 3.5. Let X be a topological poset. Let a, b ∈ X with a < b. If ↓×b is upward directed and
↓b is hole free, then b ∈ cl((a, b)). Similarly, if ↑×a is downward directed and ↑a is hole free, then
a ∈ cl((a, b)).

Proof. We will only show that if ↓× b is upward directed and ↓ b is hole free, then b ∈
cl((a, b)). Take any b-neighborhood W ⊆ X for the order topology. There are three possi-
bilities:

• There are a1, . . . , an ∈ X satisfying that b ∈ ↑×a1∩· · · ∩ ↑×an ⊆ W . By hypothesis,
↓×b is upward directed, meaning that there exists a0 ∈ ↓×b such that a ≤ a0 and
ai ≤ a0 for each i = 1, . . . , n. Again, by hypothesis, ↓b is hole free, therefore there
exists c ∈ ↓b with a0 < c < b. Finally, c ∈ (a, b) ∩ ↑×a1 ∩ · · · ∩ ↑×an.

• There are a1, . . . , an, b1, . . . , bm ∈ X satisfying that b ∈ ↑× a1 ∩ · · · ∩ ↑× an ∩ ↓×
b1 ∩ · · · ∩ ↓×bm ⊆ W . It follows the same proof as right above.

• There are b1, . . . , bm ∈ X satisfying that b ∈ ↓× b1 ∩ · · · ∩ ↓× bm ⊆ W . Since ↓b is
hole free, we can find c ∈ ↓b with a < c < b. Then c ∈ (a, b) ∩ ↓×b1 ∩ · · · ∩ ↓×bm.

□

The following technical lemma is the last tool that we need to prove our main theo-
rem and it is an slight improvement of [7, Lemma 1]. Recall that U(R) stands for the
multiplicative group of invertibles of a ring R.

Lemma 3.6. Let R be a topological ring. Let U be an open subset of R. Then:
(1) If U(R) is open and 1 ∈ cl(U), then 1 ∈ cl(U ∩ U(R)).
(2) If multiplicative inversion is continuous and 1 ∈ cl(U ∩ U(R)), then U ⊆ UU .

Proof.
(1) Let V be any open subset containing 1. Then V ∩U(R) is an open neighborhood of

1, therefore by hypothesis, (V ∩ U(R))∩U ̸= ∅, meaning that V ∩(U(R) ∩ U) ̸= ∅.
As a consequence, 1 ∈ cl(U ∩ U(R)).

(2) Fix an arbitrary u ∈ U . Let (ui)i∈I ⊆ U ∩ U(R) be a net converging to 1. By the
continuity of the inversion, we deduce that

(
u−1
i

)
i∈I

also converges to 1, therefore(
u−1
i u

)
i∈I

converges to u, which means that we can find j ∈ I with u−1
j u ∈ U .

Finally, u = uj

(
u−1
j u

)
∈ UU .

□

We are finally in the right position to answer Question 1 in the affirmative.

Theorem 3.1. Let R be a topological ordered ring with continuous inversion. If U(R) is open,
R+ \ {0} is downward directed, and R+ is closed and hole free, then [−1, 1] is a closed unit
neighborhood of 0 and (−1, 1) is an open unit neighborhood of 0.

Proof. In accordance with Proposition 3.1, it only suffices to show that int([−1, 1]) =
(−1, 1), cl((−1, 1)) = [−1, 1] and (−1, 1)(−1, 1) = (−1, 1). By hypothesis, R+ is closed,
meaning that the sets R− = −R+, ↓1 = 1 + R− and ↑−1 = −1 + R+ are closed as well
since the order topology is a ring topology. In particular, [−1, 1] = ↑−1 ∩ ↓1 is closed.
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Also, by hypothesis, R+ \ {0} is downward directed, meaning that ↑×1 = 1 + R+ \ {0}
and ↑×−1 = −1 + R+ \ {0} are downward directed by translation. Also, R+ \ {0} being
downward directed implies that R− \{0} is upward directed by additive symmetricity, so
again by translation, ↓×1 = 1+R− \{0} and ↓×−1 = R− \{0} are upward directed. Since
R+ is hole free, then so is R− by additive symmetricity, hence so are ↑1, ↑−1, ↓1 and ↓−1
as well by translation. In virtue of Lemmas 3.4 and 3.5 together with the fact that [−1, 1] is
closed, we obtain that int([−1, 1]) = (−1, 1) and cl((−1, 1)) = [−1, 1]. By bearing in mind
Lemma 3.1, it only remains to show that (−1, 1) ⊆ (−1, 1)(−1, 1). But this is just a direct
application of Lemma 3.6. □

As a direct consequence of Theorem 3.1, we obtain [3, Theorem 3.7].

Corollary 3.1. Let R be a topological totally ordered division ring with no holes. Then [−1, 1] is
a closed unit neighborhood of 0 and (−1, 1) is an open unit neighborhood of 0.

Proof. By definition, R is a topological ordered ring (whose order is total) as well as a
topological division ring (hence multiplicative inversion is continuous by default). In
totally ordered sets, the order topology is always Hausdorff. Therefore, R is Hausdorff,
so {0} is closed and U(R) = R\{0} is open. Next, R+ \{0} is trivially downward directed
because the order is total. It only remains to show that R+ is closed and hole free. It is hole
free because the whole of R is free of holes. Finally, R+ = R\ ↓×0 due to the fact that the
order is total, so R+ is closed since its complementary is open in the order topology. □

4. CONCLUSIONS

An affirmative answer to Question 1 has been provided in Theorem 3.1 without relying
on total orders nor on division rings. Nevertheless, the proof of [3, Theorem 3.7] relies on
[6, Theorem 2.6], which states that a subset B of a topological division ring R is a closed
unit neighborhood of 0 if and only if B is an additively symmetric and multiplicatively
idempotent regular closed neighborhood of 0 containing 1. The proof of [3, Theorem 3.7]
could have been simplified a little more with the following improvement of [6, Theorem
2.6].

Theorem 4.2. Let R be a topological division ring. A subset B of R is a closed unit neighborhood
of 0 if and only if B is an additively symmetric and multiplicatively idempotent closed neighbor-
hood of 0 such that 1 ∈ cl(int(B)).

Proof. All we need to show is that B is regular closed and call off [6, Theorem 2.6]. Indeed,
let us prove that cl(int(B)) = B. Fix an arbitrary b ∈ B and an arbitrary U ⊆ R neighbor-
hood of 0. The ring topology of R allows the existence of a 0-neighborhood V ⊆ R such
that V b ⊆ U . By hypothesis, there exists v ∈ V such that 1 + v ∈ int(B). On the one hand,
b+vb ∈ b+V b ⊆ b+U . On the other hand, b+vb = (1+v)b ∈ int(B)B. At this stage, note
that int(B)B is open and contained in BB = B, therefore int(B)B ⊆ int(B). The reason
why int(B)B is open is because int(B)B =

⋃
c∈B\{0} int(B)c is a union of open sets since

c is invertible. Finally, b+ vb ∈ (b+ U) ∩ int(B), meaning that b ∈ cl(int(B)).
□

ACKNOWLEDGMENTS

This research was funded by Consejerı́a de Universidad, Investigación e Innovación de
la Junta de Andalucı́a: ProyExcel00780 (Operator Theory: An interdisciplinary approach),
and ProyExcel01036 (Multifı́sica y optimización multiobjetivo de estimulación magnética
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[12] Manuilov, V. M.; Troitskiĭ, E. V. Hilbert C∗-modules, translated from the 2001 Russian original by the authors.

Translations of Mathematical Monographs, 226. Amer. Math. Soc., Providence, RI, 2005.
[13] Mishchenko, A. S.; Fomenko, A. T. The index of elliptic operators over C∗-algebras. Izv. Akad. Nauk SSSR

Ser. Mat. 43 (1979), no. 4, 831–859, 967.
[14] Moslehian, M. S.; Abedi, S. Two classes of C∗-power-norms based on Hilbert C∗-modules. Math. Scand.

130 (2024), no. 2, 364–382.
[15] Piniella, P. Existence of non-trivial complex unit neighborhoods. Carpathian J. Math. 33 (2017), no. 1, 107–114.
[16] Warner, S. L. Topological fields. North-Holland Mathematics Studies, 157, Notas de Matemática, 126. North-
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