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an extragradient method with conjugate gradient-type
direction for solving variational inequalities with
application

IBRAHIM ARZUKA1,2, PARIN CHAIPUNYA1, AND POOM KUMAM1

ABSTRACT. In this paper, we establish a fact that guarantees the strong convergence of any sequence of
images of a metric projection onto a closed convex set C. We further incorporated the extragradient technique
with a conjugate gradient-type direction to solve monotone variational inequality problems in Hilbert spaces.
Unlike existing conjugate gradient-type methods, the proposed method does not require boundedness of the
feasible set to converge to a solution of the variational inequality problem. In this regard, we establish weak
convergence for the proposed method under appropriate conditions and conduct numerical experiments to
showcase the computational efficacy and robustness of the method. Finally, we illustrate a potential application
of the method in solving international migration equilibrium problem.

1. INTRODUCTION

In this paper, we introduce an efficient numerical method for solving variational in-
equality problems (VIP) of the form:

(1.1) find x∗ ∈ C such that ⟨W (x∗), y − x∗⟩ ≥ 0, ∀y ∈ C,

where, C represents a closed and convex subset of a real Hilbert spaceH , andW : C → H
is a nonlinear operator. VIP provide a powerful framework for addressing problems
across social sciences, natural sciences, engineering, and other disciplines, as outlined
in [1, 2, 6, 9, 10, 13, 21, 26, 28, 29]. The wide range of applications of the VIP has motivated
several researchers over the years to propose iterative methods for solving such prob-
lems. Among these, the most famous is the extragradient method (EGM), proposed by
Korpelovich [14],

(1.2)


x0 ∈ C,

yj = PC(xj − λW (xj)),

xj+1 = PC(xj − λW (yj)),

where λ ∈
(
0, 1

L

)
. The sequence {xj} generated by EGM converges weakly to the solution

of VIP for a certain class of mappings. This method requires computing both the operator
W and the metric projection PC twice per iteration, which can be computationally expen-
sive in some cases. As a result, several authors have devoted considerable attention in
addressing these challenges.

Popov [18] proposed the following modification

(1.3)


x0 ∈ C,

yj = PC(xj − λW (xj)),

xj+1 = PC(yj − λW (xj)),
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where λ ∈ (0, 1
3L ). This strategy requires the computation of the operator W only once in

every iteration, but the number of projections remains the same.
Tseng [22] considered the following modification

(1.4)


x0 ∈ C,

yj = PC(xj − λW (xj)),

xj+1 = yj − λ(W (xj)−W (yj)),

where λ ∈ (0, 1
L ). This reduces the computation of the projection to just one but requires

the computation of W twice in every iteration. However, Censor [3, 4] proposed a half-
space projection technique to reduce the computational burden of the EGM. Moreover,
the EGM method has been investigated and generalized in various ways, refer to [12, 15,
16, 23–25].

On the other hand, Iiduka and Uchida [11] proposed the conjugate gradient-like method
to solve VIP as

(1.5)


yj = T (xj + λjζj),

xj+1 = τxj + (1− τ)yj ,

ζj+1 = ∇U(xj+1) + βj+1ζj ,

where λj ∈ (0, 1), βj+1 ∈ R, τ ∈ [0, 1), T is nonexpansive operator and U is the utility
function. The sequence {xj} converges to the solution of the problem under the assump-
tion that the feasible set is compact. Similarly, Iiduka [8] proposed another conjugate
gradient-like method as

(1.6)

{
xj+1 = T (xj + τjζj),

ζj+1 = ∇f(xj+1) + βj+1ζj − γj+1zj ,

where rj ∈ [0, 1), βj+1, γj+1 ∈ R+, and zj ∈ H. The sequence {xj} converges strongly to
the solution of the VIP under the assumption that the operator is strongly monotone and
bounded.

Remark 1.1. Although, the performance of algorithm (1.5) and (1.6) with a conjugate gradient
type direction is encouraging, when compared with its variant. Their convergence result holds
under the condition that the feasible set is compact and the operator is alpha-strongly monotone.
These conditions appear to be restrictive and it will be of great interest to dispense them.

Motivated by (1.5), (1.6) and the work in [14], we construct an extragradient method
with a conjugate gradient-type direction for monotone variational inequality problems in
infinite-dimensional real Hilbert spaces. A key feature of the proposed method is that
it converges without requiring any of the conditions mentioned in Remark 1.1. This
approach is the first of its kind to consider an extragradient method with a conjugate
gradient-type direction.

The structure of the paper is outlined as follows. Section 2 compiles essential defini-
tions and lemmas required for subsequent discussions. In Section 3, we introduce the
convergence theorem associated with the sequence of images of the metric projection, the
algorithm and examine its convergence. Numerical examples are provided in Section 4
to demonstrate the proposed algorithm’s efficacy compared to related ones. Section 5
deals with the application in international human migration. The paper concludes with a
concise summary in Section 6.
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2. PRELIMINARIES

In this section, we revisit key definitions and lemmas essential for this study. Through-
out this manuscript, unless stated otherwise, the solution set of the variational inequality
problem associated with the operator W over the set C is denoted by VIP(W,C).

Definition 2.1. Let W : H → H be a mapping. Then
(i) W is α-strong monotone operator if there exists α > 0 such that

⟨x− y , W (x)−W (y)⟩ ≥ α∥x− y∥2, ∀x, y ∈ H.

(ii) W is monotone if ∀x, y ∈ H,

⟨x− y , W (x)−W (y)⟩ ≥ 0.

(iii) W is Lipschitz continuous if there exists L > 0, such that

∥W (x)−W (y)∥ ≤ L∥x− y∥, ∀x, y ∈ H.

Definition 2.2. Consider a nonempty, closed, convex subset C of a Hilbert space H. The mapping
PC : H → C, which assigns each element of H to its unique nearest element in C, is referred to as
a metric projection onto C. Various properties of this mapping include:

(i) ⟨x− PC(x) , y − PC(x)⟩ ≤ 0, ∀ y ∈ C and x ∈ H.
(ii) ∥PC(x)− PC(y)∥ ≤ ∥x− y∥, ∀x, y ∈ H.

(iii) ∥PC(x)− y∥ ≤ ∥x− y∥2 − ∥x− PC(x)∥, ∀x, y ∈ H.

The following identity would be used in establishing the convergence of the proposed
method.

Lemma 2.1. Let x, y ∈ H and α ∈ R. Then
(i) ∥x+ y∥2 = ∥x∥2 + ∥y∥2 + 2⟨x , y⟩.

(ii) ∥x− y∥2 = ∥x∥2 + ∥y∥2 − 2⟨x , y⟩.
(iii) ∥(1− α)x+ αy∥2 = (1− α)∥x∥2 + α∥y∥2 − α(1− α)∥x− y∥2.

Lemma 2.2. [20, Lemma 1] Let {σn} and {bn} be nonnegative sequence of a real numbers such
that

σn+1 ≤ σn + bn, ∀n ≥ 1.

If
∑

n bn converges, then the limit of the sequence {σn} exists.

Lemma 2.3. [17, Lemma 1]. If a sequence {xn} ⊂ H converges weakly to x, then for any
y ∈ H\{x},

lim inf
n→∞

∥xn − y∥ > lim inf
n→∞

∥xn − x∥.

A mapping M : H → 2H is monotone if for all x, y ∈ H, u1 ∈M(x) and u2 ∈M(y), we
have

⟨u1 − u2, x− y⟩ ≥ 0.

M is maximal monotone if the graph G(M) of M is not properly contained in the graph
of any other monotone mapping. Moreover, a monotone map M is maximal monotone
if and only if for (u1, x) ∈ H × H, ⟨u1 − u2, x − y⟩ ≥ 0 for any (u2, y) ∈ G(M) implies
u1 ∈M(x). Let W : C → H be a monotone operator and NC(y

∗) be a normal cone of C at
y∗ ∈ C that is

NC(y
∗) = {µ ∈ H : ⟨p− y∗ , µ⟩ ≤ 0 ∀p ∈ C}.

Consider M defined by

(2.7) M(y∗) =


W (y∗) +NC(y

∗), y∗ ∈ C,

∅, y∗ /∈ C.
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By (2.7), it follows that M is a maximal monotone operator and the following holds:

0 ∈W (y∗) +NC(y
∗),

if and only if
y∗ ∈ VIP(W,C).

3. CONVERGENCE

The most effective approach widely used in forcing elements into a feasible region is
through metric projection, especially when the region inherits closedness and convexity
structure. We first state and prove the following theorem which provide a condition guar-
anteeing the convergence of a sequence of images of a metric projection onto the feasible
region.

Lemma 3.4. Suppose H is a real Hilbert space and C is a nonempty closed convex subset of H.
Let {xj} be a sequence in H such that

(3.8) ∥xj+1 − w∥2 ≤ ∥xj − w∥2 + αj , ∀w ∈ C,

where
∑

j αj <∞. Then, {PCxj} converge strongly to an element of C.

Proof. Let wj = PCxj and suppose that m > j. Then,

∥wm − wj∥2 = 2∥xm − wm∥2 + 2∥xm − wj∥2 − 4

∥∥∥∥xm − wm + wj

2

∥∥∥∥2
≤ 2∥xm − wm∥2 + 2∥xm − wj∥2 − 4∥xm − wm∥2

≤ 2∥xm − wj∥2 − 2∥xm − wm∥2

≤ 2∥xm−1 − wj∥2 − 2∥xm − wm∥2 + 2αm−1

≤ 2∥xm−2 − wj∥2 − 2∥xm − wm∥2 + 2αm−2 + 2αm−1

...

≤ 2∥xj − wj∥2 − 2∥xm − wm∥2 + 2

m−1∑
k=j

αk

≤ 2∥xj − wj∥2 − 2∥xm − wm∥2 + 2

+∞∑
k=j

αk,

(3.9)

which implies

2∥xm − wm∥2 ≤ 2∥xj − wj∥2 − ∥wm − wj∥2 + 2

+∞∑
k=j

αk

≤ 2∥xj − wj∥2 + 2

+∞∑
k=j

αk.

(3.10)

Thus,

(3.11) ∥xm − wm∥2 ≤ ∥xj − wj∥2 +
+∞∑
k=j

αk.
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By taking lim sup of both side as m→ ∞ we have

(3.12) lim sup ∥xm − wm∥2 ≤ ∥xj − wj∥2 +
+∞∑
k=j

αk.

Take lim inf of both side as j → ∞, we have

(3.13) lim sup ∥xm − wm∥2 ≤ lim inf ∥xj − wj∥2.

Thus, lim
j→∞

∥xj − wj∥2 exist. Now, as j,m → ∞ in (3.9), we have that {wj} is a Cauchy

sequence. Hence {wj} converges strongly to some τ ∈ C. □

Corollary 3.1. Observe that if αj = 0 for all j ≥ 0, then Lemma 3.4 reduces to Lemma 3.2
in [19]. Moreover, the result of Lemma 3.4 is essential for the convergence analysis of the proposed
method.

To establish the convergence, we make the following assumptions.
Assumption:

(A1.) C ⊂ H is a nonempty, closed and convex set.
(A2.) W : C → H is a monotone operator and Lipschitz continuous.
(A3.) The solution set VIP(W,C) is nonempty.

Next, we present our propose algorithm as:

Algorithm 1: An extragradient method with conjugate gradient-type direction.
Initialization: Given x0 ∈ H, Γj ∈ [0, 1), λj ∈ (0, 1), and ψ > 0. Set d0 = −W (x0),

Step 1: Compute:

Θj =
Γj

max{∥dj∥, ψ}
and

(3.14) dj+1 = −W (xj) + Θjdj .

Step 2: Determine yj by
yj = PC(xj + λjdj+1).

Step 2: Update xj+1 ∈ H as

xj+1 = PC(xj − λjW (yj)).

Set j = j + 1 and go back to step 1.

Remark 3.2. If Γj = 0 for all j ≥ 0 in (3.14), the proposed Algorithm 1 reduces to the classical
extragradient method [14].

Next, we state our main theorem as follows:

Theorem 3.1. Suppose H is a real Hilbert space, and {Γj} and {λj} are sequences such that the
following conditions are satisfied:

(i)
∑∞

j=1 Γj <∞.

(ii) lim inf
j→∞

(1− 3L2λ2j ) > 0.

Then, the sequence {xj} generated by Algorithm 1 converges weakly to VIP(W,C), such
that π = lim

j→∞
PC(xj).
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Proof. Let us begin with the following estimate base on Algorithm 1:

∥xj+1 − yj∥2 = ∥PC(xj − λjW (yj))− PC(xj + λjdj+1)∥2

≤ ∥xj − λjW (yj)− xj − λjdj+1∥2

= ∥ − λj(W (yj)−W (xj))− λjΘjdj∥2

= λ2j∥W (yj)−W (xj) + Θjdj∥2

= λ2j (∥W (yj)−W (xj)∥2 +Θ2
j∥dj∥2 + 2Θj⟨W (yj)−W (xj), dj⟩)

≤ 2λ2j (∥W (yj)−W (xj)∥2 +Θ2
j∥dj∥2)

≤ 2λ2j (L
2∥yj − xj∥2 +Θ2

j∥dj∥2)
≤ 2λ2jL

2∥yj − xj∥2 + 2λ2jΘ
2
j∥dj∥2.

(3.15)

Now, let τ ∈ C. It follows that

∥xj+1 − τ∥2 ≤ ∥xj − λjW (yj)− τ∥2 − ∥xj − λjW (yj)− xj+1∥2

= ∥xj − τ∥2 + λ2j∥W (yj)∥2 − 2λj⟨xj − τ , W (yj)⟩
− (∥xj − xj+1∥2 + λ2j∥W (yj)∥2 − 2λj⟨xj − xj+1 , W (yj)⟩)
= ∥xj − τ∥2 + λ2j∥W (yj)∥2 − 2λj⟨xj − τ , W (yj)⟩
− ∥xj − xj+1∥2 − λ2j∥W (yj)∥2 + 2λj⟨xj − xj+1 , W (yj)⟩)
= ∥xj − τ∥2 + 2λj⟨τ − xj , W (yj)⟩ − ∥xj − xj+1∥2

+ 2λj⟨xj − xj+1 , W (yj)⟩)
= ∥xj − τ∥2 − ∥xj − xj+1∥2 + 2λj⟨τ − xj+1 , W (yj)⟩).

(3.16)

By monotonicity of W, we have

0 ≤ ⟨W (yj)−W (τ) , yj − τ⟩
= ⟨W (yj) , yj − τ⟩ − ⟨W (τ) , yj − τ⟩
= ⟨W (yj) , yj − τ⟩.

(3.17)

Thus,

⟨W (yj) , τ − yj⟩ ≤ 0.

Consequently, we have

⟨W (yj) , τ − xj+1⟩ = ⟨W (yj) , τ − yj⟩+ ⟨W (yj) , yj − xj+1⟩
≤ ⟨W (yj) , yj − xj+1⟩.

(3.18)

Thus, (3.16) becomes

∥xj+1 − τ∥2 ≤ ∥xj − τ∥2 − ∥xj − xj+1∥2 + 2λj⟨W (yj) , yj − xj+1⟩
≤ ∥xj − τ∥2 − ∥xj − yj∥2 − ∥yj − xj+1∥2

− 2⟨xj − yj , yj − xj+1⟩+ 2λj⟨W (yj) , yj − xj+1⟩
≤ ∥xj − τ∥2 − ∥xj − yj∥2 − ∥yj − xj+1∥2

+ 2⟨xj − yj , xj+1 − yj⟩ − 2λj⟨W (yj) , xj+1 − yj⟩
≤ ∥xj − τ∥2 − ∥xj − yj∥2 − ∥yj − xj+1∥2

+ 2⟨xj − λjW (yj)− yj , xj+1 − yj⟩.

(3.19)
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Hence,

∥xj+1 − τ∥2 ≤ ∥xj − τ∥2 − ∥xj − yj∥2 − ∥yj − xj+1∥2

+ 2⟨xj − λjW (yj)− yj , xj+1 − yj⟩.
(3.20)

By Cauchy Schwarz, Lipschitz continuity of W and Definition 2.2(i), we have

⟨xj − λjW (yj)− yj , xj+1 − yj⟩ = ⟨xj − λjdj+1 + λjdj+1 − λjW (yj)− yj , xj+1 − yj⟩
= ⟨xj + λjdj+1 − yj , xj+1 − yj⟩
+ ⟨−λjdj+1 − λjW (yj) , xj+1 − yj⟩
≤ −λj⟨dj+1 +W (yj) , xj+1 − yj⟩
≤ −λj⟨W (yj)−W (xj) + Θjdj , xj+1 − yj⟩
≤ λj⟨W (yj)−W (xj) , xj+1 − yj⟩ −Θjλj⟨dj , xj+1 − yj⟩
≤ λj∥W (xj)−W (yj)∥∥xj+1 − yj∥+Θjλj∥dj∥∥xj+1 − yj∥
≤ Lλj∥xj − yj∥∥xj+1 − yj∥+Θjλj∥dj∥∥xj+1 − yj∥.

(3.21)

This implies that

2⟨xj − λjW (yj)− yj , xj+1 − yj⟩ ≤ L2λ2j∥xj − yj∥2 + ∥xj+1 − yj∥2

+ 2Θjλj∥dj∥∥xj+1 − yj∥.
(3.22)

By (3.15) and (3.22), we have the following

∥xj+1 − τ∥2 ≤ ∥xj − τ∥2 − ∥xj − yj∥2 − ∥yj − xj+1∥2

+ L2λ2j∥xj − yj∥2 + ∥xj+1 − yj∥2 + 2Θjλj∥dj∥∥xj+1 − yj∥
≤ ∥xj − τ∥2 − (1− L2λ2j )∥xj − yj∥2 + 2Θjλj∥dj∥∥xj+1 − yj∥,
≤ ∥xj − τ∥2 − (1− L2λ2j )∥xj − yj∥2 +Θ2

jλ
2
j∥dj∥2 + ∥xj+1 − yj∥2,

≤ ∥xj − τ∥2 − (1− 3L2λ2j )∥xj − yj∥2 +Θ2
jλ

2
j∥dj∥2 + 2λ2jΘ

2
j∥dj∥2

≤ ∥xj − τ∥2 − (1− 3L2λ2j )∥xj − yj∥2 + 3λ2jΘ
2
j∥dj∥2,

(3.23)

where λj ∈
(
0,

1√
3L

)
. Let Πj = 1 − 3L2λ2j > 0. By Lemma 2.2 and hypothesis (ii), we

have that {∥xj − τ∥} converges. Consequently, the sequence {xj} is bounded. It follows
that there exists a subsequence {xji} that converges weakly to some point π. Since C is
closed, we have π ∈ C. Moreover, by condition (ii) of Theorem 3.1, we have

(3.24) ∥xj − yj∥2 ≤ 1

Πj
((∥xj − τ∥2 − ∥xj+1 − τ∥2) + 4λ2jΘ

2
j∥dj∥2) → 0.

Now, we want to show that π ∈ VIP(W,C). Let

(3.25) Φ(d) :=

{
W (d) +NC(d), d ∈ C,

∅, d /∈ C.

Clearly, Φ is maximal monotone. Suppose (d, r) ∈ G(Φ), it follows that r−W (d) ∈ NC(d)
and for xj+1 ∈ C, we have

⟨d− xj+1 , r −W (d)⟩ ≥ 0.

However, for
xj+1 = PC(xj − λjW (yj)),

we have that
⟨xj − λjW (yj)− xj+1 , xj+1 − d⟩ ≥ 0.
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This implies that

⟨d− xj+1 ,
xj+1 − xj

λj
+W (yj)⟩ ≥ 0.

Now,
⟨d− xji+1 , r⟩ ≥ ⟨d− xji+1 , W (d)⟩

≥ ⟨d− xji+1 , W (d)⟩ − ⟨d− xji+1 ,
xji+1 − xji

λji
+W (yji)⟩

= ⟨d− xji+1 , −
(xji+1 − xji

λji

)
+W (d)−W (yji)⟩

= ⟨d− xji+1 , −
(xji+1 − xj

λji

)
−W (xji+1) +W (xji+1) +W (d)−W (yji)⟩

= −⟨d− xji+1 ,
(xji+1 − xji

λji

)
⟩ − ⟨d− xji+1 , W (d)−W (xji+1)⟩

+ ⟨d− xj+1 , W (xji+1)−W (yji)⟩

≥ −⟨d− xji+1 ,
xji+1 − xji

λji
⟩+ ⟨d− xji+1 , W (xji+1)−W (yji)⟩.

(3.26)

Thus, ⟨d− π , r⟩ ≥ 0 as j → ∞. Since Φ is maximal monotone, it follows that
π ∈ VIP(W,C).

Next, we show that the whole sequence converges weakly to π. Suppose {xji} and
{xjk} are subsequences of {xj} such that xji ⇀ π and xjk ⇀ π1. Let us assume that
π ̸= π1. By Lemma 2.3, we have

lim
j→∞

∥xj − π∥ = lim inf
i→∞

∥xji − π∥ < lim inf
i→∞

∥xji − π1∥

= lim
j→∞

∥xj − π1∥ = lim inf
k→∞

∥xjk − π1∥ < lim inf
k→∞

∥xjk − π∥

= lim
j→∞

∥xj − π∥,

which is a contradiction. Hence π = π1. Thus, {xj} converges weakly to π ∈ VIP(W,C).
Now, let

ηj = PV IP (W,C)(xj).

We want to show that
π = lim

j→∞
ηj .

Since π ∈ VIP(W,C), we have that

⟨π − ηj , ηj − xj⟩ ≥ 0.

It follows from (3.23) and Lemma 3.4, that {ηj} converges strongly to π1 ∈ VIP(W,C).
Thus,

⟨π − π1 , π1 − π⟩ ≥ 0,

and therefore π = π1. □

4. NUMERICAL EXAMPLE

In this section, our goal is to demonstrate the efficiency and robustness of the proposed
strategy (MEG) in comparison with the projection and contraction method (PCM) [5] and
Tseng’s algorithm (Tseng) [22]. We used Matlab 2021a on a Dell Core i7 computer to
conduct the numerical simulation. We set the control parameters as: Γj = 1

(j+1)5 , λj =
0.001

(10j+1) and ψ = 1.
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Example 4.1. [7, Ex. 3] Consider the VIP with W : Rm → Rm defined by

(4.27) W (x) =



x1 + x2 + sin(x1)
−x1 + x2 + sin(x2)
x3 + x4 + sin(x3)
−x3 + x4 + sin(x4)

...
x2j−1 + x2j + sin(x2j−1)
−x2j−1 + x2j + sin(x2j)

...
x2m−1 + x2m + sin(x2m−1)
−x2m−1 + x2m + sin(x2m)


,

where x = (x1, x2, ...x2m−1, x2m). It is evident from the paper that W is monotone and Lipschitz
continuous. We setm = 10 and compared the performances of these methods; the numerical results
are summarized in Table 1. It is evident from Table 1 that the proposed method MEG is effective,

TABLE 1. Numerical results for Example 4.1 with different stopping cri-
teria.

MEG PCM Tseng
TOL Iter. CPU Iter. CPU Iter. CPU
10−6 2 0.0030 15 0.0040 18 0.0035
10−7 3 0.0037 22 0.0039 21 0.038
10−8 5 0.0037 42 0.0041 24 0.0427

requiring fewer iterations and less computational time. Furthermore, the graphical representation
of the results in Figure 1 clearly demonstrates the computational efficiency and robustness of the
proposed approach.

Example 4.2. Let us consider a simple bilevel optimization problem

min
x∈X∗

Q(x),

where X∗ is a set of solutions for another minimization problem with objective function, say K.
This kind of problem and its well-posedness have been analyzed and considered by many researchers
(see, for example, [31]). In this case, we consider the inner objective function given by

(4.28) K(x) =
1

2
∥M(x)− c∥2 + δX(x),

where δX denotes an indicator function over the non-negative orthant. The outer objective function
is given by

(4.29) Q(x) =
1

2
xTDx.

Here, the variational operator W := D satisfies the required assumptions with the feasible set
C := X∗ provided that M is a positive definite and D is a semi-positive definite.

In the numerical experiment, we obtained data for M and c by discretizing the Baart and Phillip
test problem as in [30]. We compared the performance of the proposed method with the other
methods, the convergences plots are presented in Figures 2
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FIGURE 1. Convergence plots of Example 4.1.
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FIGURE 2. Convergence plots for Example 4.2.

In this example, we set the tolerance to 10−5. The results show that the proposed method and
Tseng method are highly competitive in solving the Phillip test problem while concerning the Baart
problem the proposed method exhibits faster convergence with the lowest error and fewer iterations,
whereas the performance of PCM and the Tseng method alternates. In general, the proposed method
is suitable for this type of problem.
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5. APPLICATION

Example 5.3. Let us consider international human migration as another example where we as-
sume a closed economic system comprises n countries in focus, each identified by its origin i and
destination j. Within this framework, there exist n classes of international migrants, with each
class represented by k. It’s crucial to note that a migrant class may encompass various types, such
as highly skilled, skilled, or unskilled workers. Alternatively, it may represent individuals like
refugees, asylum seekers, or irregular migrants. The conservation flow of the immigrants is given
by

(5.30) qki =
∑
l

fkil,

and

(5.31) q̂i
k =

∑
l

fkli.

where q̂ik is the initial fixed population of class k in country i, qki is the population of class k in
country i, and fkil is the flow of immigrant of class k from the country i, to the country l. We define
the feasible set N = {(q, f) | f ≥ 0, (5.30) and (5.31) hold}.

The set of constraints encompasses a wide range of international migration regulations. To be
specific, we examine regulations enforced by a solitary country denoted as j̄. Let the set C∗ include
classes k and countries i, where i = j̄, subject to an upper limit on the international migration
flows into country j̄, represented as Uj . The constraints can be expressed as follows

(5.32)
∑
i∈C∗

∑
k∈C∗

fkij ≤ Uj .

Now, we discuss some categories of regulations that (5.32) represented.
As an illustration, the set C∗ may be defined to limit the migration flow from a particular

country ī and a specific migrant class k̄, indicating that

(5.33) f k̄īj̄ ≤ Uj̄ .

A multi-class and flow pattern (q∗, f∗) ∈ N is in equilibrium if for each class k=1,...,j and pair
of location (i, j) i = 1, ....j, j ̸= i

(5.34) µk
i (q

∗) + cij(q
∗)


= µk

i − λk∗j , if fkij > 0,

≥ µk
i − λk∗j , if fkij = 0,

and

(5.35) λk∗i


≥ 0, if

∑
l ̸=i f

k∗
li = qki ,

= 0, if
∑

l ̸=i f
k∗
li < qki .

The cost functions which correspond to the utility and cost of flow are given by

(5.36) µk
i (q) = −Lk

i (q
k
i )

2 +
∑
lj

Lkl
ij q

l
j + bki ,

(5.37) ckij(f) = τki (f
kl
ij )

2 +
∑
lj

γklij f
kl
ij + hklij ,
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subject to the constraints (5.32), (5.31) and (5.30), where µk
i denote the utility perceived by an

immigrant of class k in country i and ckij denote the cost of flow of immigrant for class k, which
encompassing the economic, psychological, and social costs incurred when migrating from coun-
try i to country j, Lk

i , τ
k
i , γ

kl
ij and Lij are real numbers. Now, the corresponding variational

inequality formulation of the migration equilibrium is given by the following theorem:

Theorem 5.2. [27, Theorem 5.2] The population and migration flow pattern (q∗, f∗) ∈ N sat-
isfies the equilibrium conditions (5.34) and (5.35) if and only if it solves the variational inequality
problem:

(5.38) ⟨−u(q∗), q − q∗⟩+ ⟨c(f∗), f − f∗⟩ ≥ 0, ∀(q, f) ∈ N,

where u and c are the cost functions integrating all the µk
i and ckij , respectively.

For the proof, please refer to the book Networks economics [27].
As an illustrative example, consider the international human-migration model consisting of 10
countries of origin and 15 destination countries. The initial populations qi = 5000i (i = 1 : 10)
and the data for the other parameter were generated randomly and uniformly in the following
manners: Lk

i ∈ [1, 10] × 10−6, τki ∈ [.1, .5] × 10−6, γklij ∈ [.1, .5] × 10−6, Lij ∈ [1, 10] , bki ∈
[1, 10] and hklij ∈ [1, 10] .

The convergence plots based on this example are given in Figure 3.
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FIGURE 3. Convergence plots for the international migration problem.

In this example, we set the maximum number of iterations to 50 as the stopping cri-
terion to determine the best method with a minimum number of errors. As depicted in
Figure 3, the proposed method converges with the least error, followed by PCM, and then
the Tseng method.

6. CONCLUSION

This manuscript proposed an iterative method to solve variational inequality prob-
lems. The method incorporates the extragradient technique with a conjugate gradient-
type direction, accelerating convergence towards the solution. It is shown that sequences
generated by the proposed method converge weakly to a solution of the problem. This
convergence is facilitated by a substantial lemma that guarantees the strong convergence
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of a certain sequence of images of a metric projection ontoC to an element ofC. Examples
and application are given to showcase the theoretical findings. Example 4.1 is for a special
monotone operator adapted from the work of [7] while Example 4.2 is taken from [30] for
solving a special bilevel programming problem. Example 5.3 illustrates the application of
our proposed method in addressing problems involving international human migration
within a network economy system. Additionally, the proposed method demonstrates
promising performance compared to other methods for variational inequality problems
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