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Numerical Approximation for an Axisymmetric Brinkman
Exterior Problem

KHALED M’HAMED-MESSAOUD1 , RABAH HACENE BELLOUT2 , AND TOUFIK LAADJ3

ABSTRACT. This paper presents a novel numerical approximation of the axisymmetric Brinkman flow in
three-dimensional exterior domains using the infinite element method, offering a robust alternative to conven-
tional boundary element methods. By extending the framework established for the axisymmetric Stokes prob-
lem, we develop a stable and convergent approach for the Brinkman equations, accommodating a wide range of
inverse permeability parameter. Numerical experiments for both Stokes and Brinkman problems demonstrate
first-order convergence under the L2

1 norm, with the method maintaining stability across various parameter
settings and large unbounded domains. Our results highlight the efficacy and versatility of the infinite element
method, making it a promising tool for solving complex fluid flow problems in exterior domains.

1. INTRODUCTION

The Brinkman equations model the flow of a viscous fluid through porous media,
serving as a parameter-dependent bridge between the Darcy and Stokes models. Ini-
tially introduced as a homogenization technique for the Navier-Stokes equations [1], the
Brinkman model finds applications in diverse fields such as underground water hydrol-
ogy, petroleum engineering, automotive industry, biomedical engineering, and heat pipe
modeling. Its unified formulation offers a significant advantage over domain decomposi-
tion methods that couple Darcy and Stokes equations, particularly in scenarios where the
number and locations of Stokes-Darcy interfaces are unknown a priori.

Despite its versatility, solving the Brinkman equations poses significant challenges, es-
pecially due to the high variability in the partial differential equation (PDE) coefficients,
which can take extremely large or small values. This variability adversely affects the con-
ditioning of the discrete problem, complicating the development of stable finite element
discretizations [25, 23]. Various finite element families have been tested for Brinkman
flow, with studies such as [16, 21] demonstrating that optimal convergence in the Darcy
case is achieved using Pk−Pk−1 polynomials for pressure and velocity, respectively, while
the reverse holds for the Stokes case. To address this, equal-order interpolation has been
recommended for robust performance across all parameter regimes.

Efforts to enhance numerical stability include the work of Burman and Hansbo [7, 8],
who introduced jump penalization on velocity or pressure fields to stabilize Crouzeix-
Raviart or P1 − P0 elements. Similarly, Correa and Loula [9] employed an augmented
Lagrangian approach with least-squares stabilization to extend the applicability of Taylor-
Hood elements to the Darcy case. High-order non-conforming elements were explored by
Guzmán and Neilan [15], while Vassilevski and Villa [24] highlighted limitations of certain
finite element pairs in extreme parameter regimes, such as the Darcy limit where viscosity
σ → 0 or impermeability κ → ∞.
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For exterior domains, boundary integral methods have been widely used, as seen in the
work of Kohr and Wendland [18], who addressed a transmission problem for Brinkman
flow around a porous particle using Fredholm integral equations. Recent studies by Kohr
et al. [19, 20], Gutt et al. [14], and Anaya et al. [2] have further advanced the understand-
ing of Brinkman flow through vorticity formulations and other approaches.

This study introduces a novel application of the infinite element method, inspired by
Ying [27, 28], to the numerical approximation of the axisymmetric Brinkman problem in
three-dimensional exterior domains. Unlike the commonly used boundary element meth-
ods [6, 22, 17], our approach leverages the infinite element method to handle unbounded
domains effectively. Building on the well-posedness results for the axisymmetric Stokes
problem [4, 12, 13, 5, 3], we extend the framework of Fang and Liao [11] to the Brinkman
problem. Our contribution lies in demonstrating the stability and convergence of the in-
finite element method for a wide range of inverse permeability parameters κ, validated
through numerical experiments for both Stokes and Brinkman problems. These experi-
ments confirm the method’s robustness in large unbounded domains, offering a compu-
tationally efficient alternative to traditional approaches.

Recent advancements in numerical methods for the Brinkman problem include the vir-
tual element method (VEM), which accommodates general polygonal meshes. For in-
stance, Xiong and Chen [26] developed a pressure-robust VEM with a priori and a poste-
riori error estimates, achieving viscosity-independent convergence for the incompressible
Brinkman problem. In contrast, our work employs the infinite element method to ad-
dress the challenges of axisymmetric exterior domains, offering computational efficiency
for unbounded regions.

The paper is structured as follows: Section 2 outlines notations and preliminaries. Sec-
tion 3 formulates the axisymmetric Brinkman problem and establishes its well-posedness.
Section 4 describes the infinite element approximation, while Section 5 details the imple-
mentation algorithm. Numerical results are presented in Section 6, followed by conclu-
sions in Section 7, where we summarize the scope and main merits of this work.

2. NOTATIONS AND PRELIMINARIES

In this paper, Ωc denotes a bounded, simply connected three-dimensional domain with
Lipschitz continuous boundary ∂Ωc, where n is the unit outward normal. The domain Ω

represents the exterior of Ωc. Similarly, Ξc is an open, simply connected domain in R2

with boundary ∂Ξc and unit outward normal ñ, and Ξ is the exterior of Ξc. The domain
Ξ serves as the meridional section of the axisymmetric domain Ω, enabling the trans-
formation of three-dimensional axisymmetric problems into equivalent two-dimensional
problems on Ξ [5].

We denote by C∞(Ω) the space of infinitely differentiable functions on Ω, and C∞
0 (Ω)

the subspace of functions with compact support. The space C(Ω) consists of continu-
ous functions on Ω, and D′(Ω) is the space of distributions. For an integer l ≥ 0 and
real number p with 1 ≤ p ≤ ∞, Lp(Ω) comprises measurable functions u such that(∫

Ω
|u|p dx

)1/p
< ∞. The Sobolev space W l,p(Ω) includes functions with distributional

derivatives up to order l in Lp(Ω), equipped with the norm

∥u∥l,p,Ω =

∑
|α|≤l

∥Dαu∥pp

1/p

, or |u|l,p,Ω =

∑
|α|=l

∥Dαu∥pp

1/p

,

with modifications for p = ∞. When p = 2, we denote W l,2(Ω) = H l(Ω). The space
W l,p

0 (Ω) is the closure of C∞
0 (Ω) under the norm ∥ · ∥l,p,Ω, and (W l,p(Ω))′ is its dual.
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For axisymmetric problems, weighted Sobolev spaces are essential to account for the
radial dependence and ensure well-posedness [5]. The space H1,∗(Ω) is defined as

H1,∗(Ω) =

{
u ∈ D′(Ω) : ∇u ∈ L2(Ω),

u

|x|2
∈ L2(Ω)

}
,

with the norm

∥u∥1,∗ =

(∫
Ω

(
|∇u|2 + u2

|x|2

)
dx

)1/2

.

This space is the closure of C∞(Ω) under ∥ · ∥1,∗, and H1,∗
0 (Ω) is the closure of C∞

0 (Ω).
On the meridional domain Ξ, we define the weighted space Lp

α(Ξ) as the set of mea-
surable functions ω̃(r, z) satisfying

∥ω̃∥Lp
α(Ξ) =

(∫
Ξ

|ω̃|prα dr dz

)1/p

< ∞,

for any real number α and 1 ≤ p < ∞. The weighted Sobolev space W l,p
1 (Ξ) consists

of functions in Lp
1(Ξ) whose partial derivatives up to order l belong to Lp

1(Ξ), with the
semi-norm and norm

|ω̃|W l,p
1 (Ξ) =

(
l∑

k=0

∥∂k
r ∂

l−k
z ω̃∥p

Lp
1(Ξ)

)1/p

, ∥ω̃∥W l,p
1 (Ξ) =

(
l∑

k=0

|ω̃|p
Wk,p

1 (Ξ)

)1/p

.

When p = 2, we denote W l,2
1 (Ξ) = H l

1(Ξ). The space Hs
1(∂Ξ), for s ≥ 0, is built from

L2
1(∂Ξ), defined as

L2
1(∂Ξ) =

{
g : ∂Ξ → R measurable :

∫
∂Ξ

g2r(t) dt < ∞
}
,

where r(t) is the radial coordinate at the point with tangential coordinate t. The trace
operator is continuous from H1

1 (Ξ) to H
1/2
1 (∂Ξ) [5].

Further, we define

H1
1,0(Ξ) =

{
ω̃ ∈ H1

1 (Ξ) : ω̃|∂Ξ = 0
}
, V 1

1 (Ξ) =
{
ω̃ ∈ H1

1 (Ξ) : ω̃ ∈ L2
−1(Ξ)

}
,

V 1
1,0(Ξ) =

{
ω̃ ∈ H1

1,0(Ξ) : ω̃ ∈ L2
−1(Ξ)

}
,

with the norm

∥ω̃∥V 1
1 (Ξ) =

(
|ω̃|2H1

1 (Ξ) + ∥ω̃∥2L2
−1(Ξ)

)1/2
.

The space X(Ξ) = V 1
1,0(Ξ)×H1

1,0(Ξ) is equipped with the norm

∥ũ∥X =
(
∥ũ1∥2V 1

1 (Ξ) + |ũ2|2H1
1 (Ξ)

)1/2
.

The differential operators on Ξ are defined as

∇̃ũ =

(
∂ũ

∂r
,
∂ũ

∂z

)
, ∇̃ · ũ =

∂ũ1

∂r
+

ũ1

r
+

∂ũ2

∂z
,

∇̃ × ũ =
∂ũ1

∂z
− ∂ũ2

∂r
, ∆̃ũ =

(
−1

r
∇̃(r∇̃ũ1) +

1

r2
ũ1,−

1

r
∇̃(r∇̃ũ2)

)
.

These definitions facilitate the transformation of axisymmetric problems into the merid-
ional plane, ensuring proper handling of singularities near the axis of symmetry [5].
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3. AXISYMMETRIC BRINKMAN EXTERIOR PROBLEM

We consider the Brinkman problem in the exterior domain Ω:

−σ∆u+ κu+∇p = f , in Ω,(3.1)

divu = 0, in Ω,(3.2)

u|∂Ω = g,(3.3)

with the compatibility condition

(3.4)
∫
∂Ω

g · n ds = 0,

where σ ≥ 0 is the fluid viscosity and κ is the inverse permeability of the porous medium.
When κ is small, the equations approximate the Stokes problem, while large κ values
resemble the Darcy equations [24].

The axisymmetric formulation reduces the three-dimensional problem to the merid-
ional domain Ξ, following the framework established for the Stokes problem [5, 11]. As
shown in [5], the axisymmetric Stokes system splits into two problems: one for the angu-
lar component uθ and another for (ur, uz, p). Assuming no rotation (i.e., fθ = 0, gθ = 0),
the angular component uθ = 0, so u = (ur(r, θ, z), 0, uz(r, θ, z)) ↔ ũ = (ũ1(r, z), ũ2(r, z))
and p(r, θ, z) ↔ p̃(r, z). The same is the case for the Brinkman problem [5, 11], which we
extend here by incorporating the permeability term κu.

The stationary axisymmetric Brinkman equations with zero angular components and
incompressibility are:

−1

r
∇̃(r∇̃ũ1) +

1

r2
ũ1 + κũ1 +

∂p̃

∂r
= f̃1, in Ξ,(3.5)

−1

r
∇̃(r∇̃ũ2) + κũ2 +

∂p̃

∂z
= f̃2, in Ξ,(3.6)

∂

∂r
(rũ1) +

∂

∂z
(rũ2) = 0, in Ξ,(3.7)

(ũ1, ũ2)|∂Ξ = g̃,(3.8)

with

(3.9)
∫
∂Ξ

rg̃ · ñ ds = 0.

For g̃ ∈ V
1/2
1 (∂Ξ) =

{
ω̃ ∈ H

1/2
1 (∂Ξ) : ω̃ ∈ L2

−1(∂Ξ)
}

satisfying (3.9), there exists ũ0 ∈

V1
1(Ξ) such that ∇̃ · ũ0 = 0 and ũ0|∂Ξ = g̃ [5]. Setting u = ũ − ũ0, the problem reduces

to a homogeneous boundary system with right-hand side f̃ + ∆̃ũ0. Thus, we focus on
(3.5)–(3.8) with g̃|∂Ξ = 0.

The variational formulation is: Given f̃ ∈ (X(Ξ))′, find ũ ∈ X(Ξ), p̃ ∈ L2
1(Ξ), such that

ã(ũ, ṽ) + b̃(ṽ, p̃) = ⟨f̃ , ṽ⟩0, ∀ṽ ∈ X(Ξ),(3.10)

b̃(ũ, q̃) = 0, ∀q̃ ∈ L2
1(Ξ),(3.11)

where ⟨f̃ , ṽ⟩0 :=
∫
Ξ
rf̃ · ṽ dr dz, and the bilinear forms are

ã(ũ, ṽ) =

∫
Ξ

[
r

(
∇̃ũ1 · ∇̃ṽ1 + ∇̃ũ2 · ∇̃ṽ2 +

1

r2
ũ1ṽ1

)
+ κ (ũ1ṽ1 + ũ2ṽ2)

]
dr dz,(3.12)

b̃(ũ, p̃) =

∫
Ξ

p̃

(
∂

∂r
(rũ1) +

∂

∂z
(rũ2)

)
dr dz.(3.13)
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The well-posedness of the Stokes problem was established by Fang and Liao [11], who
proved the ellipticity of ã(·, ·) and the inf-sup condition for b̃(·, ·). Our contribution ex-
tends this to the Brinkman problem, where the bilinear form ã(·, ·) in (3.12) is elliptic since

ã(ũ, ũ) = ∥ũ∥2X(Ξ) + κ∥ũ∥2L2(Ξ) ≥ α∥ũ∥2X(Ξ), α > 0,

for κ ≥ 0. The inf-sup condition

(3.14) inf
p̃∈L2

1(Ξ)
sup

ũ∈X(Ξ)

b̃(ũ, p̃)

∥ũ∥X(Ξ)∥p̃∥L2
1(Ξ)

≥ β, β > 0,

holds as in the Stokes case [11]. This ensures the well-posedness of the Brinkman problem,
a novel result in the context of axisymmetric exterior domains.

4. INFINITE ELEMENT APPROXIMATION

We employ the infinite element method (IEM) developed by Ying [27, 28] to solve the
variational system (3.10)–(3.11), adapting it to the axisymmetric Brinkman problem in
exterior domains. The choice of P2−P0 elements, where the velocity ũh is piecewise qua-
dratic (P2) and the pressure p̃h is piecewise constant (P0), ensures stability for Stokes-like
problems while accommodating the additional permeability term in the Brinkman equa-
tions [10]. This is a novel application of IEM, extending its use from the Stokes problem
[11] to the more complex Brinkman model.

The triangulation Th is constructed on Ξ, assuming the section boundary ∂Ξ is a poly-
gon with the origin o ∈ Γ0 = ∂Ξ. For a constant ξ > 1, similar curves Γ1,Γ2, . . . ,Γk, . . .
are drawn with proportionality constants ξ, ξ2, . . . , ξk, respectively, centered at o. The
domain between Γk−1 and Γk forms a layer Ξk, divided into triangles with consistent ele-
ment counts across layers. Nodes on Γ0 are selected, including all vertices, and rays from
the origin divide each layer into similar quadrilaterals, each split into two triangles (see
Figure 1).

Γ0

O

Γ0Γ1Γ2

Ξ

∂Ξ

ΞC

Figure 1. Infinite Element triangulation of the domain Ξ.

We require the triangulation to be of C0 type [13] and regular, satisfying

∀e ∈ Th, ∃σ > 0 s.t.
he

ρe
≤ σ,

where he is the longest edge of element e, and ρe is the diameter of the largest ball con-
tained in e. This ensures

meas(e) ≤ C0h
2 dist(o, e)2,
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with C0 a positive constant, h = maxhe in Ξ1, and dist(o, e) the distance from e to the
origin [4].

The infinite element spaces are defined as:

Sh =
{
ũ ∈ C(Ξ)2 : ũ|e ∈ P2(e),∀e ∈ Th

}
,

Xh = {ũ ∈ X(Ξ) : ũ ∈ Sh} , Qh =
{
p̃ ∈ L2

1(Ξ) : p̃|e ∈ P0(e),∀e ∈ Th
}
,

Wh =
{
ũ ∈ C(Ξ)2 : ũ ∈ X(Ξ), ũ|e ∈ P1(e)

2,∀e ∈ Th
}
.

The discrete problem is: Find (ũh, p̃h) ∈ Xh ×Qh such that

ã(ũh, ṽh) + b̃(ṽh, p̃h) = ⟨f̃ , ṽh⟩(0), ∀ṽh ∈ Xh,(4.15)

b̃(ũh, q̃h) = 0, ∀q̃h ∈ Qh.(4.16)

The well-posedness of this saddle point problem follows from the Babuŝka-Brezzi-
Neĉas theorem [10]. The bilinear form ã(·, ·) is coercive, and the inf-sup condition is
verified as in [11], ensuring convergence as h → 0.

5. IMPLEMENTATION

The infinite element method (IEM) proposed by Ying [27, 28] offers a computation-
ally efficient approach for solving the Brinkman equations in unbounded domains by
avoiding domain truncation, unlike boundary element methods. We implement the al-
gorithm for the homogeneous case (f̃ = 0), following [27, 28], with extensions to the
non-homogeneous case possible as described therein.

The values of ũh at the nodes on the polygon Γk are arranged into the column vector

yk =
(
ṽ
(1)
h , ũ

(2)
h , ṽ

(2)
h , ũ

(3)
h , ṽ

(3)
h , . . . , ũ

(N−1)
h , ṽ

(N−1)
h , ṽ

(N)
h

)t
,

where ũ
(j)
h and ṽ

(j)
h denote the r- and z-direction components of ũh at the j-th node, re-

spectively, and N is the number of nodes on each Γk. Due to the symmetry of the domain,
the r-component of ũh is zero on the axis of symmetry.

Since the boundary value g̃h must satisfy the compatibility condition
∫
Γ0

rg̃h · ñ ds = 0,
there exists a vector h such that hTy0 = 0. To enforce this condition on all layers without
imposing it directly, we select a test function q̃ in equation (3.11) such that q̃ = 0 on ξkΞ
and q̃ = 1 on Ξ \ ξkΞ. This yields

0 =

∫
Ξ\ξkΞ

r∇̃ · ũ dr dz =

∫
Γ0

rũ · ñ ds+

∫
Γk

rũ · ñ ds.

Given the compatibility condition on Γ0, it follows that
∫
Γk

rũ · ñ ds = 0, or equivalently,
hTyk = 0 for all k.

We normalize h to a unit vector and construct an orthogonal matrix T = [h, H], where
h is the first column. Setting zk = HTyk establishes a one-to-one correspondence between
zk and yk, effectively incorporating the flux condition.

We solve the Brinkman equations on Ξ1 using the finite element method with boundary
data y0 and y1 on the given mesh, after eliminating the degrees of freedom associated
with mid-edge points y1/2 via static condensation. Let the approximate solution be ũh.
Then, there exist matrices K0, K ′

0, and A such that

(5.17) ã(ũh, ṽh) = (zT0 , z
T
1 )

(
K0 −AT

−A K ′
0

)(
z0
z1

)
,

where the block matrix is the stiffness matrix for the layer between Γ0 and Γ1.
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Owing to the geometric similarity of the layers Ξk, the stiffness matrices for subsequent
layers are scaled by factors of ξk−1, yielding

ξk−1

(
K0 −AT

−A K ′
0

)
, k = 2, 3, . . . .

Assembling these layer stiffness matrices at the nodes results in the infinite system of
equations:

(5.18)

−Az0 + ξ1/2Kz1 − ξAT z2 = 0,

−Az1 + ξ1/2Kz2 − ξAT z3 = 0,

...

−Azk−1 + ξ1/2Kzk − ξAT zk+1 = 0,

...

where K = ξ1/2K0 + ξ−1/2K ′
0.

As shown by Ying in [27, 28], there exists a real transfer matrix X such that

(5.19) zk+1 = Xzk, k = 0, 1, . . . .

Starting from z0, all zk can be computed recursively, and the corresponding yk recovered
via

(5.20) yk+1 = HXHTyk, k = 0, 1, . . . .

The transfer matrix X is obtained as follows. Substituting (5.19) into the second equa-
tion of (5.18) gives

(−A+ ξ1/2KX − ξATX2)z0 = 0.

Since z0 is arbitrary, X satisfies the quadratic matrix equation

(5.21) ξATX2 − ξ1/2KX +A = 0.

The k-th equation in (5.18) can be rewritten as

(5.22) R1

(
zk

zk−1

)
= R2

(
zk+1

zk

)
,

where

(5.23) R1 =

(
ξ1/2K −A

I 0

)
, R2 =

(
ξAT 0
0 I

)
.

For k = 1, setting z0 = g (where Xg = λg) yields

(5.24) R1

(
λg
g

)
= λR2

(
λg
g

)
.

Thus, λ and
(
λg
g

)
are a generalized eigenvalue and eigenvector of the pencil R1 − λR2.

Solving this generalized eigenvalue problem provides 2n eigenvalues and eigenvectors,
where n is the dimension of zk. We select the n eigenvalues with |λ| < 1, corresponding to
solutions that decay at infinity, along with their associated eigenvectors, to construct X .

The transfer matrix is given by

(5.25) X = TΛT−1,
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where Λ is the diagonal matrix of the selected eigenvalues, and T is the matrix whose
columns are the corresponding g vectors extracted from the lower halves of the general-
ized eigenvectors.

This procedure, known as the infinite element method, is detailed in [27, 28] (pp. 120–
126). The algorithm presented here applies to the homogeneous case f̃ = 0. For the
inhomogeneous case f̃ ̸= 0, the method extends by incorporating load vectors in each
layer during assembly, with the transfer matrix handling the propagation of solutions
outward.

6. NUMERICAL EXPERIMENTS

We consider the exterior domain Ξ, the meridional section of a cylinder with radius 1
and generator length 2, taking half the section due to symmetry. The triangulation Th in
layers Ξ1 and Ξ2 for N = 33 nodes is shown in Figure 2. Experiments vary N (number of
nodes on each Γk) and the similarity parameter ξ.

Example 1. We solve the Stokes problem from [11] with exact solution

ũ =

(
− 3rz

16(r2 + z2)5/2
,

r2 − 2z2

16(r2 + z2)5/2

)
, p̃ = 0, f̃ = 0,

and boundary values g̃1, g̃2 derived from the exact solution. Figures 3–4 show computed
and exact components uh and vh on Γ20 for ξ = 1.20 (N = 65) and ξ = 1.30 (N = 17),
respectively. The results indicate better accuracy for uh than vh due to singularities on
the z-axis, with errors increasing with ξ. Table 1 shows first-order convergence in the L2

1

norm, consistent with [11]. Table 2 lists errors for N = 65 across different ξ, showing
reduced errors as ξ decreases.

Table 1. Convergence order in domain (r, z) ∈
⋃20

k=1 Ξk

N ξ ∥ũ− ũh∥L2
1
× 104 order

17 1.40 5.12920
33 1.30 1.92890 1.4114
65 1.20 0.57379 1.7225

129 1.15 0.23240 1.2987

Table 2. Errors with N = 65 in domain (r, z) ∈
⋃20

k=1 Ξk

ξ ∥ũ− ũh∥L2
1
× 103

2.40 2.22901
2.10 1.73340
1.80 1.09820
1.50 0.45893
1.20 0.05737
1.15 0.02973

Example 2. We solve the Brinkman problem (3.1)–(3.4) with p̃ = 0, f̃ = 0, and the
same boundary values as in Example 1. Due to the absence of an analytical solution,
we compare computed solutions across mesh refinements. Figures 5–7 show uh and vh
on Γ20 for N = 65, ξ = 1.20, and κ = 1, 10, 25, respectively. The results exhibit similar
convergence behavior to the Stokes case, with κ having minimal impact on stability. Table
3 reports the norms ∥ũh − ũh/2∥L2

1
and ∥ũh/2 − ũh/4∥L2

1
for varying κ, confirming first-

order convergence. This validates the robustness of the infinite element method for the
Brinkman problem across a range of permeability parameters.
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Table 3. Convergence order with ξ = 1.20 in domain (r, z) ∈
⋃20

k=1 Ξk

κ ∥ũh − ũh/2∥L2
1
× 105 ∥ũh/2 − ũh/4∥L2

1
× 105 order

0.0 0.20778 0.03037 2.77
1.0 0.22669 0.04252 2.14

10.0 0.55954 0.15866 1.81
25.0 0.85958 0.31020 1.47
50.0 1.3370 0.61196 1.12

100.0 2.6281 1.4110 0.89

o r

z

2 3 4 5 6 7 8 91
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

252627282930313233
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Figure 2. Triangulation with N = 33 in the first
and second layers.
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7. CONCLUSION

This study introduces a novel application of the infinite element method, inspired by
Ying [27, 28], for the numerical approximation of the axisymmetric Brinkman flow in
three-dimensional exterior domains. By extending the foundational work of Fang and
Liao [11] on the axisymmetric Stokes problem, we have developed a robust computa-
tional framework that effectively handles the challenges posed by the Brinkman equa-
tions, particularly in unbounded domains. Our approach offers a compelling alternative
to traditional boundary element methods [6, 22, 17], which are commonly employed for
exterior problems but can be computationally intensive.

The numerical experiments conducted for both the Stokes and Brinkman problems
demonstrate the method’s stability and first-order convergence under the L2

1 norm across
a wide range of inverse permeability parameters κ. Notably, the infinite element method
remains effective even for coarse meshes and large values of κ, confirming its robustness
in scenarios where the PDE coefficients exhibit high variability. The ability to maintain
accuracy in large unbounded domains further underscores the method’s versatility, mak-
ing it suitable for practical applications in fields such as underground water hydrology,
petroleum engineering, and biomedical engineering, where the Brinkman model is preva-
lent.

A key merit of this work lies in its comprehensive validation of the infinite element
method for the Brinkman problem, building on the well-posedness established for the ax-
isymmetric Stokes system [4, 12, 13, 5, 3]. The method’s implementation, detailed in Sec-
tion 5, leverages a transfer matrix approach to efficiently handle the infinite domain, offer-
ing computational advantages over methods requiring domain truncation. The numerical
results, presented in Section 6, confirm that the method achieves consistent convergence
behavior, with errors decreasing as the mesh is refined and the similarity parameter ξ is
adjusted, aligning with theoretical expectations [11].

In summary, this work advances the numerical treatment of axisymmetric Brinkman
flow by demonstrating the efficacy of the infinite element method in exterior domains.
Future research will explore the method’s performance in non-homogeneous cases (f̃ ̸= 0)
and investigate its applicability to more complex geometries and coupled flow problems.
These extensions will further enhance the method’s utility in addressing real-world fluid
dynamics challenges.
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