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Operational almost periodic alpha unpredictability

MARAT AKHMET1 AND AKYLBEK ZHAMANSHIN2

ABSTRACT. Modern science is continually seeking new types of functions to meet industrial demands. These
needs have expanded to include the analysis of brain activity and advancements in artificial intelligence, partic-
ularly in the realms of machine learning and deep learning. Our research is centered on this area of functional
analysis.

This paper introduces advanced concepts known as operational almost periodic alpha unpredictable func-
tions. To develop this idea, we present a new operational research method for analyzing qualitative dynamic fea-
tures. In simple terms, this method effectively distinguishes between regularity and irregularity in the dynamics
of chaotic processes. Specifically, we identify almost periodic and alpha unpredictable components within the
solutions of linear and quasilinear differential equations. Together, these components produce a functional de-
pendence that could significantly contribute to research on complexity in today’s challenging problems. The
theoretical results are illustrated through both analytical and graphical representations of specific dynamics.

1. INTRODUCTION

Oscillations are a fundamental characteristic of many processes found in nature. Of sig-
nificant theoretical and practical importance are oscillatory motions described by differ-
ential equations. The literature provides numerous results regarding periodic, quasiperi-
odic, and almost periodic solutions of differential equations, attributable to established
mathematical methods and their important applications [16, 18, 19, 21, 22, 25, 28]. Addi-
tionally, recurrent and Poisson stable solutions are essential to the theory of differential
equations [12, 23, 24, 26, 27, 28].

The pioneers of the theory of nonlinear oscillations, H. Poincaré and A.M. Lyapunov,
developed a mathematical framework appropriate for studying nonlinear systems. Ini-
tially, the theory of nonlinear dynamics primarily focused on periodic motions. The first
functions that could still be considered ”periodic” and sufficiently defined for rigorous
mathematical analysis were quasiperiodic functions, which were independently intro-
duced and studied by P. Bohl [13] and E. Esclangon [20]. H. Bohr’s key papers laid the
foundation for the theory of almost periodic functions, which are now referred to as H.
Bohr almost periodic functions [14]. Subsequently, various approaches to almost period-
icity were explored by N.N. Bogolyubov, A.S. Besicovitch, S. Bochner, V.V. Stepanov, and
others [11, 15, 18, 22, 25]. Almost periodic functions play a crucial role in the advance-
ment of harmonic analysis on groups, as well as Fourier series and integrals on groups.
The first paper detailing the existence of almost periodic solutions was written by H. Bohr
and O. Neugebauer, and today, the theory of almost periodic equations has been further
developed in conjunction with problems related to differential equations, stability theory,
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and dynamical systems. This theory has seen applications not only in ordinary differen-
tial equations and classical dynamical systems but also across various classes of partial
differential equations and equations in Banach spaces.

The study of dynamics in various processes greatly benefits from recurrence functions,
especially those that are Poisson stable [12, 23, 24, 26, 27, 28]. In several texts and papers,
the exploration of recurrency has expanded to include alpha unpredictable functions. In
integrated style the results are given in [1, 3, 4]. The concept of compartmental alpha
unpredictable functions was introduced in a research paper [6], which combines elements
of recurrence and chaos to give more constructive details of sophisticated dynamics [1, 2,
4].

The notions of recurrent motions and Poisson stable points are central to the qualitative
theory of motion in dynamical systems. H. Poincaré regarded Poisson stable points as
fundamental in describing complexity within celestial dynamics [26, 27].

A few years ago, we introduced the concepts of unpredictable points and functions,
which significantly expanded upon the classical theory of dynamical systems established
by H. Poincaré and G. Birkhoff [9, 10]. In this and subsequent research, we will refer to
these as alpha unpredictable points and functions. This terminology is intended to distinguish
our concepts from existing ones and to avoid confusing the reader.

An alpha unpredictable point can be seen as an evolution of the Poisson stable one.
Our research demonstrated that the quasi-minimal set is chaotic if the Poisson stable point
possesses the alpha unpredictability property. Consequently, the existence of chaos in a
dynamic system can depend on the presence of just one point—an alpha unpredictable
point.

Alpha unpredictable functions were defined as points within the functional space of the
dynamical system, with elements shifted along the time coordinate, and in the context
of the topology of convergence on compact sets of the time axis. This approach has sig-
nificantly eased the challenge of proving the existence of alpha unpredictable solutions
for differential equations, allowing us to remain firmly within the realm of differential
equations without necessarily relying on related results from dynamical systems or chaos
theory.

The primary innovation of this paper is the introduction of a new method for defining
functions. In its most general sense, a function is understood as an assignment of a single
member from one set to an element of another set. In this study, we focus on functions
that are defined operationally in a general context and specifically through integral op-
erators. To highlight the unique construction method, we have chosen to retain the term
”operational” for the algorithm.

This approach is essential for researching complex dynamics, where both regular and
irregular inputs are combined within a single process. Despite the intricate relationships
involved, our simulations demonstrate that this method is effective. The impact of these
dynamic components is reflected in the output solutions of the models. We believe that
more detailed investigations of the functions obtained through this process will be a pri-
ority in the near future.

2. PRELIMINARIES

Now, let us present the main definitions of the research. Throughout the paper, R and
N will stand for the set of real and natural numbers, respectively, and the Euclidean norm
will be used.

A set of numbers is said to be relatively dense, if there is a positive number l, such that
any interval of length l contains a member of the set.
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Definition 2.1. [22] A continuous function f(t) : R → Rn is said to be almost periodic if, for
any positive ϵ, the set S(f, ϵ) = {τ : ∥f(t+ τ)− f(t)∥ < ϵ for all t ∈ R} is relatively dense.

The number τ is called an ϵ−almost period of function f(t).
The following property of almost periodic functions will be used in the main part of

the paper.

Remark 2.1. [25] Let the functions f1(t), f2(t),. . . ,fn(t) be almost periodic functions. Then for
any ϵ > 0, all the functions f1(t), f2(t),. . . ,fn(t) have a common relatively dense set of ϵ−almost
periods.

Definition 2.2. [1] A uniformly continuous and bounded function g(t) : R → Rn is alpha
unpredictable if there exist positive numbers ϵ0, δ and sequences tk, sk both of which diverge to
infinity such that ∥g(t + tk) − g(t)∥ → 0 as k → ∞ uniformly on compact subsets of R and
∥g(t+ tk)− g(t)∥ > ϵ0 for each t ∈ [sk − δ, sk + δ] and k ∈ N.

An illustrative example of alpha unpredictable function. We will now demonstrate
how to constructively determine alpha-unpredictable functions. This method relies en-
tirely on discrete and differential equations. While this approach is not original, it is
effective. For a simple analogy, remember that the trigonometric functions sin and cos
can be derived as solutions to a harmonic equation. Furthermore, we will use asymptotic
presentation to visualize alpha unpredictability.

Let ψi, i ∈ Z, be a solution of the logistic difference equation

(2.1) λi+1 = µλi(1− λi),

where i ∈ Z, and µ ∈ [3 + (2/3)1/2, 4) is a fixed parameter. The section [0, 1] is invariant
with respect to (2.1) for the considered values of µ.

Now, consider the following integral function

(2.2) Θ(t) =

∫ t

−∞
e−3(t−s)Ω(s)ds,

where Ω(t) is a piecewise constant function defined on the real axis through the equation
Ω(t) = ψi for t ∈ [i, i+ 1), i ∈ Z. It is worth noting that Θ(t) is bounded on the whole real

axis such that sup
t∈R

|Θ(t)| ≤ 1

3
, and it satisfies the differential equation,

(2.3) θ′(t) = −3θ(t) + Ω(t).

In [9], it was demonstrated that the function Θ(t) is alpha unpredictable. Figure 1
illustrates the graph of the solution θ(t) for the system described in 2.3, with the initial
condition θ(0) = 0.5. This solution was obtained for µ = 3.85 and the initial condition
λ0 = 0.4 in equation (2.1). The graph asymptotically approaches the graph of the function
Θ(t), and this is clearly observable for t > 30.

Remark 2.2. Periodic and quasi-periodic functions are in the class of almost periodic functions, as
well as periodic, quasi-periodic and almost periodic functions are Poisson stable functions. Alpha
unpredictability implies Poisson stability, but not vice versa.

The sequence tk, k = 1, 2, . . . , is said to be the convergence sequence of the function g(t).
We call the uniform convergence on compact subsets of R, the convergence or Poisson prop-
erty, and the existence of the sequence sk and positive numbers ϵ0, δ is called the separation
property.



174 M. Akhmet and A. Zhamanshin

0 10 20 30 40 50 60 70 80 90 100
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t

Θ
(t
)

FIGURE 1. An asymptotic approximation of the alpha unpredictable
function Θ(t) is vividly seen, if t > 30.

Definition 2.3. [1, 6] A function g(t) : R → Rn is said to be compartmental almost periodic
alpha unpredictable function, if g(t) = G(t, t), where G(u, v) is a continuous bounded function,
almost periodic in u uniformly with respect to v, and alpha unpredictable in v uniformly with
respect to u, i.e.,

(i) for any positive ϵ, the set S(G, ϵ) = {τ : ∥G(u + τ, v) − G(u, v)∥ < ϵ for all u ∈ R} is
relatively dense;

(ii) there exist a sequence tk which diverges to infinity and sup
u∈R

∥G(u, v+ tk)−G(u, v)∥ → 0

as k → ∞ uniformly on bounded intervals of v;
(iii) there exist positive numbers ϵ0, δ and sequences tk, sk, both of which diverge to infinity,

such that ∥G(u, v + tk)−G(u, v)∥ > ϵ0 for v ∈ [sk − δ, sk + δ], u ∈ R and k ∈ N.

The last definition has not been used in the theory of differential equations because no
sufficient conditions for alpha unpredictability of solutions have been established. For
this reason, the present research proposes a new type of function that includes an almost
periodic component, which is more applicable and constructive at this time.

Definition 2.4. A function z(t) : R → Rn is said to be operational almost periodic alpha unpre-
dictable function, if z(t) = Ψg(t), where g(t) = G(t, t), is a compartmental almost periodic alpha
unpredictable function, Ψ is an operator on the space of bounded and continuous on R functions
such that ΨG(t, v) is an almost periodic function in t uniformly with respect to v, and ΨG(u, t)
is alpha unpredictable function uniformly with respect to u.

It can be of a scientific interest to consider the following definitions of operational ir-
regularity.

Definition 2.5. A function z(t) : R → Rn is said to be operational periodic alpha unpredictable
function, if z(t) = Ψg(t), where g(t) = G(t, t), is a compartmental periodic alpha unpredictable
function, Ψ is an operator on the space of bounded and continuous on R functions such that
ΨG(t, v) is an periodic function in t uniformly with respect to v, and ΨG(u, t) is alpha unpre-
dictable function uniformly with respect to u.

Definition 2.6. A function z(t) : R → Rn is said to be operational quasi-periodic alpha unpre-
dictable function, if z(t) = Ψg(t), where g(t) = G(t, t), is a compartmental quasi-periodic alpha
unpredictable function, Ψ is an operator on the space of bounded and continuous on R functions
such that ΨG(t, v) is an quasi-periodic function in t uniformly with respect to v, and ΨG(u, t) is
alpha unpredictable function uniformly with respect to u.

The last proposal can be of effective use for constructive realizations of Definition 2.4.
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It is clear that the operational dependence on arguments can be viewed as a composi-
tion function. However, to highlight the development of new relationships and to focus
on the algorithms used to approve these properties, we have chosen to use the term ”op-
erational”.

Remark 2.3. Consider an alpha unpredictable function ψ(t) with convergence sequence tk. For a
fixed number ω > 0 there exist a subsequence tkl

and a number τω such that tkl
→ τω(mod ω)

as l → ∞. In what follows, we shall call the number τω as the Poisson shift for the function ψ(t)
with respect to the ω. The set of Poisson shifts Tω is not empty, in general case, it can consist of
several or even an infinite number of elements. The number κω = inf Tω, 0 ≤ κω < ω, is said to
be Poisson number for the function ψ(t) with respect to the number ω. We say that the sequence
tk satisfies kappa property with respect to the number ω if κω = 0.

In [1, 6] it has been proved that under the kappa property there are quasilinear systems, which
operational periodic alpha unpredictable solutions are compartmental periodic alpha unpredictable
ones, if the ω is the period. It is of strong interest to find conditions, similar to kappa property,
such that operational quasi or almost periodic solutions are alpha unpredictable.

3. LINEAR SYSTEMS

The main object of the present section is the system of linear differential equations,

x′(t) = A(t)x+ g(t),(3.4)

where t ∈ R, x ∈ Rn, n is a fixed natural number; A(t) is n−dimensional square matrix;
g(t) : R → Rn is uniformly continuous and bounded function.

We assume that the following conditions are satisfied.
(C1) the matrix A(t) is an ω−periodic;
(C2) the function g(t) is compartmental almost periodic alpha unpredictable in the

sense of Definition 2.3, g(t) = G(t, t), and sup
t∈R

∥G(t, t)∥ =M ;

(C3) the convergence sequence tk of function g(t) satisfies the kappa property with
respect to the period ω.

Consider the homogeneous system, associated with (3.4),

x′(t) = A(t)x(t).(3.5)

Let X(t), t ∈ R, be the fundamental matrix of the system (3.5) such that X(0) = I, and I
is the n × n identical matrix. Moreover, X(t, s) is the transition matrix, such that X(t +
ω, s+ ω) = X(t, s) for all t, s ∈ R.

Assume that the following assumption is valid.
(C4) The eigenvalues ρi, i = 1, 2, . . . , n, of the monodromy matrixX(ω) in modulus are

less than one.
It follows from the last condition that there exist positive numbers K and α such that

∥X(t, s)∥ ≤ Ke−α(t−s),(3.6)

for t ≥ s [19].
The next lemma is necessary for further reasoning.

Lemma 3.1. [4, 5] If the inequality (3.6) is satisfied, then the following estimation is correct

∥X(t+ τ, s+ τ)−X(t, s)∥ ≤ max
t∈R

∥A(t+ τ)−A(t)∥2K
2

αe
e−

α
2 (t−s),(3.7)

for t ≥ s and arbitrary real number τ.



176 M. Akhmet and A. Zhamanshin

Proof. Since

dX(t+ τ, s+ τ)

dt
= A(t)X(t+ τ, s+ τ) + (A(t+ τ)−A(t))X(t+ τ, s+ τ),

we have that

X(t+ τ, s+ τ) = X(t, s) +

∫ t

s

X(t, u)(A(u+ τ)−A(u))X(u+ τ, s+ τ)du.

That is why,

∥X(t+ τ, s+ τ)−X(t, s)∥ ≤∫ t

s

∥X(t, u)∥∥A(u+ τ)−A(u)∥∥X(u+ τ, s+ τ)∥du ≤

max
t∈R

∥A(t+ τ)−A(t)∥
∫ t

s

K2e−α(t−s)du =

max
t∈R

∥A(t+ τ)−A(t)∥K2e−α(t−s)(t− s) =

max
t∈R

∥A(t+ τ)−A(t)∥K2e−
α
2 (t−s)e−

α
2 (t−s)(t− s).

Since sup
u≥0

e−
α
2 uu =

2

αe
, the lemma is proved. □

Theorem 3.1. If conditions (C1)-(C4) are valid, then the system (4.22) possesses a unique asymp-
totically stable operational almost periodic alpha unpredictable solution.

Proof. There exists the unique asymptotically stable bounded solution for system (3.4) as
the following integral expression [16, 18, 21, 22, 25],

z(t) =

∫ t

−∞
X(t, s)g(s)ds, t ∈ R.(3.8)

Introduce the following functional operator, to stay in the circumstances of Definition
2.4,

Ψh(t) =

∫ t

−∞
X(t, s)h(s)ds, t ∈ R,(3.9)

where h(t) is a continuous bounded function.
In what follows, to prove that the solution z(t) in (3.8) is operational almost periodic

alpha unpredictable function. We verify that

z1(t, v) = ΨG(t, v) =

∫ t

−∞
X(t, s)G(s, v)ds, t ∈ R,(3.10)

is almost periodic function in t uniformly in v, and the function

z2(u, t) = ΨG(u, t) =

∫ t

−∞
X(t, s)G(u, s)ds, t ∈ R,(3.11)

is alpha unpredictable in t, uniformly in u.
Summarizing the last two properties, the solution z(t) is operational almost periodic

alpha unpredictable function in the sense of Definition 2.4.



Compartmental almost periodic alpha unpredictability 177

a). Firstly, let us show that the function z1(t, v) is almost periodic. According to Remark
2.1, for a fixed positive ϵ the matrix A(t) and function G(t, v) have a common relatively
dense set of ϵ-almost periods, uniformly for all v. Fix τ , one of the almost periods, to get

∥z1(t+ τ, v)− z1(t, v)∥ = ∥
∫ t

−∞
X(t+ τ, s+ τ)G(s+ τ, v)−

∫ t

−∞
X(t, s)G(s, v)ds∥ ≤∫ t

−∞

(
∥X(t+ τ, s+ τ)−X(t, s)∥G(s+ τ, v)∥+ ∥X(t, s)∥∥G(s+ τ, v)−G(s, v)∥

)
ds <∫ t

−∞

(
ϵ
2K2

αe
e−

α
2 (t−s)M +Ke−α(t−s)ϵ

)
ds ≤ ϵ

4K2

α2e
M +

Kϵ

α
≤ ϵ

(4K2

α2e
M +

K

α

)
,

for all t ∈ R. Therefore, z1(t, v) is almost periodic function.
b). Next, we will prove that the function z2(u, t) is alpha unpredictable in t. Applying

the method of included intervals [7], we will approve that z2(u, t+tk) → z2(u, t) as k → ∞,
uniformly on compact subsets of R and all v.

Let us fix a positive ϵ and an interval [a, b], −∞ < a < b < ∞. There exist numbers c, ξ
such that c < a and ξ > 0, which satisfy the following inequalities:

(3.12)
4K2ξ

α2e
M <

ϵ

3
,

(3.13)
2K

α
Me−α(a−c) <

ϵ

3
,

and

(3.14)
Kξ

α
[1− e−α(b−c)] <

ϵ

3
.

According to condition (C3), one can assume without lost of generality that ∥A(t + tk) −
A(t)∥ < ξ, and ∥G(u, t + tk) − G(u, t)∥ < ξ for t ∈ [c, b] for sufficiently large k. Now, by
applying Lemma 3.1, we get that

∥z2(u, t+ tk)− z2(u, t)∥ =

∥
∫ t

−∞
X(t+ tk, s+ tk)G(u, s+ tk)−

∫ t

−∞
X(t, s)G(u, s)ds∥ ≤∫ t

−∞

(
∥X(t+ tk, s+ tk)−X(t, s)∥G(u, s+ tk)∥ds+ ∥X(t, s)∥∥G(u, s+ tk)−G(u, s)∥

)
ds ≤∫ t

−∞
∥X(t+ tk, s+ tk)−X(t, s)∥G(u, s+ tk)∥ds+

∫ c

−∞
∥X(t, s)∥∥G(u, s+ tk)−G(u, s)∥ds+∫ t

c

∥X(t, s)∥∥G(u, s+ tk)−G(u, s)∥ds ≤
∫ t

−∞

2K2ξ

αe
e−

α
2 (t−s)Mds+∫ c

−∞
2Ke−α(t−s)Mds+

∫ t

c

Ke−α(t−s)ξds ≤

4K2ξ

α2e
M +

2K

α
Me−α(a−c) +

Kξ

α
[1− e−α(b−c)],

for all t ∈ [a, b]. From inequalities (3.12) to (3.14) it follows that ∥z2(u, t+ tk)−z2(u, t)∥ < ϵ
for t ∈ [a, b]. Therefore, z2(u, t+ tk) uniformly converges to z2(u, t) on bounded intervals
of R. Thus, the convergence property of function z2(u, t) is shown.

Now, let us prove the separation property for the function. According to condition (C2)
G(u, t) is alpha unpredictable in t, and therefore exist positive numbers δ and ϵ0 such that
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∥G(u, t + tk) − G(u, t)∥ > ϵ0 for t ∈ [sk − δ, sk + δ]. Denote K0 = inf{∥X(t, s)∥ : t ≥ s}.
The number K0 is positive, since of the periodicity and uniqueness of solutions true for
the homogeneous system. One can find numbers l ∈ N and δ1 > 0 which satisfy the
following inequalities

δ1 < δ,(3.15)

∥X(t+ tk, s+ tk)−X(t, s)∥ ≤ ϵ0
l
, t ∈ R, |s| < δ1,(3.16)

δ1(K0 −
M

l
) >

3

2l
,(3.17)

∥z2(u, t+ s)− z2(u, t)∥ ≤ ϵ0
4l
, t ∈ R, |s| < δ1,(3.18)

Assume that the numbers l, δ1 and k ∈ N are fixed. Denote by ∆ the value of ∥z2(u, sk+
tk)− z2(u, sk)∥, and consider two alternative cases: (1) ∆ ≥ ϵ0

l , and (2) ∆ < ϵ0
l .

(1) If ∆ ≥ ϵ0
l , it is easily find, from (3.18), that

∥z2(u, t+ tk)− z2(u, t)∥ ≥ ∥z2(u, sk + tk)− z2(u, sk)∥ − ∥z2(u, sk)− z2(u, t)∥ −

∥z2(u, t+ tk)− z2(u, sk + tk)∥ >
ϵ0
l
− ϵ0

4l
− ϵ0

4l
=
ϵ0
2l
,

for t ∈ [sk − δ1, sk + δ1].
(2) Applying the relation

z2(u, t+ tk)− z2(u, t) = z2(u, sk + tk)− z2(u, sk) +∫ t

sk

X(t+ tk, s+ tk)G(u, s+ tk)−
∫ t

sk

X(t, s)G(u, s)ds = z(sk + tk)− z(sk) +∫ t

sk

[X(t+ tk, s+ tk)−X(t, s)]G(u, s+ tk)ds+∫ t

sk

X(t, s)[G(u, s+ tk)−G(u, s)]ds,

and inequalities (3.15)-(3.18), one can obtain that

∥z2(u, t+ tk)− z2(u, t)∥ ≥
∫ t

sk

∥X(t, s)∥∥G(u, s+ tk)−G(u, s)∥ds−

∥z2(u, sk + tk)− z2(u, sk)∥ −
∫ t

sk

∥X(t+ tk, s+ tk)−X(t, s)∥∥G(u, s+ tk)∥ds ≥∫ t

sk

K0ϵ0ds−
ϵ0
l
−
∫ t

sk

ϵ0
l
Mds ≥ δ1K0ϵ0 −

ϵ0
l
− δ1

ϵ0
l
M >

ϵ0
2l
,

for each t ∈ [sk, sk + δ1]. Thus, the function z2(u, t) is alpha unpredictable. The results in
parts a) and b) imply that the bounded solution z(t) is asymptotically stable operational
almost periodic alpha unpredictable solution, which satisfies Definition 2.4.

□

3.1. Numerical examples. In this part of the paper, we shall provide several concrete lin-
ear systems, which satisfy the conditions of Theorem 3.1. Solutions of the models are
operational almost periodic alpha unpredictable functions. In fact, they are operational
quasi-periodic solutions, but it is known that the last one almost periodic functions. This
is why, one can accept that the present suggestions, indeed support the theoretical obser-
vations of this section.
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In what follows the piecewise constant function Ω(t),which described in Section 2, will
be defined for t ∈ [hi, h(i+ 1)), where i ∈ Z, and h is a positive real number. The number
h is said to be the length of step of the functions Ω(t) and Θ(t). The ratio of the period and
the length of step, ∇ = ω/h, we call the degree of periodicity. In the book [4] and papers
[5, 6, 8], the dependence of the dynamics of the compartmental periodic alpha unpredictable
functions on the degree of periodicity was considered. Now, we will show how the degree
of periodicity can affect shape of the graphs trajectory of operational almost periodic alpha
unpredictable solutions.

Example 3.1. Consider the following system,

x′1 = (−2 + sin(t))x1 + 0.24Θ(t)(0.2 sin(2t) + sin(
√
2t))

x′2 = (−4 + cos(2t))x2 + 0.25Θ(t)(0.1 cos(t)− sin(
√
3t)),(3.19)

where Θ(t) is the alpha unpredictable function with the step of length h = 6π, described above in
(2.2),

A(t) =

(
−2 + sin(t) 0

0 −4 + cos(2t)

)
,

g(t) =

(
0.24Θ(t)(0.2 sin(2t) + sin(

√
2t))

0.25Θ(t)(0.1 cos(t)− sin(
√
3t))

)
.

The matrix A(t) is 2π−periodic, and the degree of periodicity ∇ is equal to 1/3. Condition (C4)
holds with multipliers ρ1 = e−4π and ρ2 = e−8π. Figure 2 demonstrates the time series of the
coordinates x1(t), x2(t) of the solution x(t) of the system (3.19) with initial values x1(0) = 0,
x2(0) = 0.1, which asymptotically approximates the unique operational almost periodic alpha
unpredictable solution of the system. Since the degree is less than one, it is evident that alpha
unpredictability dominates over alpha periodicity in the solution. This confirms that the opera-
tional relations of these properties are consistent with those observed in our previous papers on
compartmental solutions.
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FIGURE 2. The coordinates of the solution x(t) of system (3.19), which
asymptotically converge to those of the operational almost periodic alpha
unpredictable solution.

Example 3.2. Consider the system, where matrix A(t) is 2−periodic

x′1 = (−2 + sin(πt))x1 + 0.24Θ(t)(0.2 sin(2πt) + sin(
√
2πt))

x′2 = (−4 + cos(2πt))x2 + 0.25Θ(t)(0.1 cos(πt)− sin(
√
3πt)),(3.20)

and alpha unpredictable function Θ(t) with the step of length h = 2. The degree of periodicity
is equals to 1. The multipliers ρ1 = e−2 and ρ2 = e−8 of the homogeneous system, associated
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with (3.20), are satisfy to the condition (C4). In Figure 3 shown the coordinates x1(t), x2(t) of
the solution x(t) of the system (3.20) with initial data x1(0) = 0, x2(0) = 0.1. Since the degree
is less than one, it is clear that alpha unpredictability takes precedence over alpha periodicity in
the solution. In other words, one can not recognize almost periodicity through the graph. This
confirms that the operational relationships of these properties align with the compartmental ones
observed in our previous papers [6].
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FIGURE 3. The coordinates of the solution x(t) of system (3.20), when
the degree of periodicity is 1, and there is no domination, neither alpha
unpredictability nor almost periodicity.

Example 3.3. In the following system

x′1 = (−2 + sin(0.1t))x1 + 0.24Θ(t)(0.2 sin(0.2t) + sin(0.2
√
2t))

x′2 = (−4 + cos(0.2t))x2 + 0.25Θ(t)(0.1 cos(0.1t)− sin(0.2
√
3t)),(3.21)

the matrix A(t) is 20−periodic and alpha unpredictable function Θ(t) with the step of length
h = 0.1π. The degree of periodicity ∇ = 200/π. The coordinates of the solution x(t) of the system
(3.21) with initial data x1(0) = 0, x2(0) = 0.1 are illustrated in Figure 4. As the degree is
large one can expect that almost periodicity will be evidently seen in the visual presentation of the
dynamics, and the alpha unpredictability could not mask the almost periodicity.

4. QUASILINEAR SYSTEMS

Let us commence with the following definitions.

Definition 4.7. [7] A bounded function f(t, x) : R ×D → Rn, D ⊂ Rn is a domain, is said to
be alpha unpredictable in t, uniformly, with respect to x ∈ D, if there exist positive numbers ϵ0, δ
and sequences tk, sk, both of which diverge to infinity, such that sup

D
∥f(t+ tk, x)− f(t, x)∥ → 0

as k → ∞ uniformly on bounded intervals of t and x ∈ D, and ∥f(t+ tk, x)− f(t, x)∥ > ϵ0 for
t ∈ [sk − δ, sk + δ], x ∈ D and k ∈ N.

Definition 4.8. [8] A function f(t, x) : R × D → Rn, D ⊂ Rn is an open and bounded set,
is said to be compartmental almost periodic alpha unpredictable in t uniformly for x function,
if f(t, x) = G(t, t, x), where G(u, v, x) is a continuous bounded function, almost periodic in u
uniformly with respect to arguments v, x, and alpha unpredictable in v uniformly with respect to
u and x.
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FIGURE 4. The coordinates of the solution x(t) of system (3.21), which
asymptotically approximates those of the operational almost periodic al-
pha unpredictable solution.

In this section we consider quasilinear differential equation

x′(t) = A(t)x+ g(t, x),(4.22)

where t ∈ R, x ∈ Rn, n is a fixed natural number; A(t) is n−dimensional square matrix;
g : R×D → Rn, D = {x ∈ Rn, ∥x∥ < H}, where H is a fixed positive number.

The following conditions are needed
(C5) the function g(t, x) is compartmental almost periodic alpha unpredictable in the

sense of Definition 4.8, such that g(t, x) = G(t, t, x);
(C6) The sequence of convergence tk, k = 1, 2, . . . , admits kappa property with respect

to the period ω of matrix A(t);
(C7) sup

R×R×D
∥G(t, s, x)∥ =M ;

(C8) there exists a positive constant L such that ∥G(t, s, x1)−G(t, s, x2)∥ ≤ L ∥x1 − x2∥
for all t, s ∈ R, x1, x2 ∈ D;

(C9)
KM

H
< α;

(C10) KL < α,

According to [18, 19, 21, 22], a bounded on the real axis function y(t) is a solution of
(4.22), if and only if it satisfies the equation

y(t) =

∫ t

−∞
X(t, s)g(s, y(s))ds, t ∈ R,(4.23)

where X(t, s) is the transition matrix of the system (3.5).
In what follows, we denote C(R) the set of all uniformly continuous and bounded on

R functions with the norm ∥ψ(t)∥0 = supt∈R ∥ψ(t)∥.

Lemma 4.2. Suppose that conditions(C1), (C4)-(C10) are valid, then the system (4.22) possesses
a unique bounded asymptotically stable solution.

Proof. Define on C(R) an operator Ψg(t, ϕ(t)) such that

Ψg(t, ϕ(t)) =

∫ t

−∞
X(t, s)g(s, ϕ(s))ds, t ∈ R.(4.24)
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The function Ψg(t, ϕ(t)) is a uniformly continuous since its derivative is a bounded on the
real axis. Fix an arbitrary function ϕ(t) that belongs to C(R). For all t ∈ R, we have

∥Ψg(t, ϕ(t))∥ ≤
∫ t

−∞
∥X(t, s)∥∥g(s, ϕ(s))∥ds ≤

∫ t

−∞
Ke−α(t−s)Mds ≤ KM

α
.

Therefore, according to condition (C9) it is true that ∥Ψg(t, ϕ(t))∥ < H, t ∈ R. Summariz-
ing the above discussion, the set C(R) is invariant for the operator.

We proceed to show that the operator Ψg(t, ϕ(t)) : C(R) → C(R) is contractive. Let u(t)
and v(t) be members of C(R). Then, we obtain that

∥Ψg(t, u(t))−Ψg(t, v(t))∥ ≤
∫ t

−∞
∥X(t, s)∥∥g(s, u(s))− g(s, v(s))∥ds =∫ t

−∞
Ke−α(t−s)L∥u(s)− v(s)∥ds ≤ KL

α
∥u(t)− v(t)∥0,

for all t ∈ R. Thus, ∥Ψg(t, u(t))−Ψg(t, v(t))∥0 < KL
α ∥u− v∥0, and by condition (C10) the

operator Ψg(t, ϕ(t)) : C(R) → C(R) is contractive.
According to the contraction mapping theorem there exists the unique fixed point,

ψ(t) ∈ C(R), of the operator Ψ,which is the unique bounded solution of the system (4.22).
Finally, we will consider asymptotic stability of the solution ψ(t) of system (4.22). It is

true that

ψ(t) = X(t, t0)ψ(t0) +

∫ t

t0

X(t, s)g(s, ψ(s)))ds,

for t ≥ t0.
Let φ be another solution of system (4.22). One can write that

φ(t) = X(t, t0)φ(t0) +

∫ t

t0

X(t, s)g(s, φ(s))ds.

Subtraction of two solutions gives us that

∥ψ(t)− φ(t)∥ = ∥X(t, t0)∥∥ψ(t0)− φ(t0)∥+
∫ t

t0

∥X(t, s)∥∥g(s, ψ(s))− g(s, φ(s))∥ds ≤

Ke−α(t−t0)∥ψ(t0)− φ(t0)∥+
∫ t

t0

Ke−α(t−s)L∥ψ(s)− φ(s)∥ds.

Applying Gronwall-Bellman Lemma, one can get that

∥ψ(t)− φ(t)∥ ≤ Ke−(α−KL)(t−t0)∥ψ(t0)− φ(t0)∥, t ≥ t0.

The last inequality and condition (C10) confirm that the solution ψ(t) is asymptotically
stable. The lemma is proved. □

In what follows, we shall consider conditions for the solution y(t) to be an operational
almost periodic alpha unpredictable function.

For this reason, let us adapt Definition 2.4 to the quasilinear case.

Definition 4.9. A function z(t) : R → Rn is said to be operational almost periodic alpha un-
predictable function, if it uniquely satisfies z(t) = Ψg(t, z(t)), where g(t, x) = G(t, t, x), is a
compartmental almost periodic alpha unpredictable in t function, Ψ is an operator on the space
of bounded and continuous on R functions such that there exists a unique function z(t, v) which
satisfies z(t, v) = ΨG(t, v, z1(t, v)), and almost periodic in t uniformly with respect to v, x, and
a unique function z(u, t) which satisfies z(u, t) = ΨG(u, t, z2(u, t)), and alpha unpredictable
uniformly with respect to u, x.
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Theorem 4.2. If conditions (C1),(C4)-(C10) are valid, then the system (4.22) possesses a unique
asymptotically stable operational almost periodic alpha unpredictable solution.

Proof. Denote by A the set of almost periodic functions ϕ(t, v) : R → Rn, with common
ϵ− periods τ. Fix a function y(t, v) that belongs to B.

Define on A the operator Ψϕ(t, v) such that

ΨG(t, v, ϕ(t, v)) =

∫ t

−∞
X(t, s)G(s, v, ϕ(s, v))ds, t ∈ R.(4.25)

Conditions of the theorem and Lemma 4.2 imply that there exists a unique bounded
fixed point, z(t, v), of the operator. To prove that the function is almost periodic, it is
sufficient to show that the ΨG(t, v, y(t, v)) is almost periodic in t for each function y(t, v)
in A.

Using inequalities (3.6),(3.7) and condition (C8) we obtain that

∥ΨG(t, v, y(t+ τ, v))−ΨG(t, v, y(t, v))∥ =

∥
∫ t

−∞
X(t+ τ, s+ τ)G(s+ τ, v, y(s+ τ, v))−

∫ t

−∞
X(t, s)G(s, v, y(s, v))ds∥ ≤∫ t

−∞

(
∥X(t+ τ, s+ τ)−X(t, s)∥G(s+ τ, v, y(s+ τ, v))∥+

∥X(t, s)∥∥G(s+ τ, v, y(s+ τ, v))−G(s+ τ, v, y(s, v))∥+

∥X(t, s)∥∥G(s+ τ, v, y(s, v))−G(s, v, y(s, v))∥
)
ds ≤∫ t

−∞

(
ϵ
2K2

αe
e−

α
2 (t−s)Mg +Ke−α(t−s)Lϵ+Ke−α(t−s)ϵ

)
ds

≤ ϵ
4K2

α2e
Mg +

KLϵ

α
+
Kϵ

α
≤ ϵ

(4K2

α2e
Mg +

KL

α
+
K

α

)
.

Thus the function Ψy(t, v) is almost periodic in t.
Let tk is the convergence sequence of the function G(u, t, x). We denote by B the set of

functions ψ(u, t) : R → Rn, satisfy convergence property with common sequence tk, and
∥ψ∥0 < H.

Define the operator ΨG(u, t, ψ(u, t)) on B such that

ΨG(u, t, ψ(u, t)) =

∫ t

−∞
X(t, s)G(u, s, ψ(u, s))ds, t ∈ R.(4.26)

Duo to conditions of the theorem and Lemma 4.2 there exists a unique bounded fixed
point, y(t), for the operator. To prove that it is a Poisson stable function, it is sufficient to
check that ΨG(u, t, y(u, t)) is from B provided y(u, t) belongs to the set.

Let us fix a positive number ϵ and an interval [a, b], −∞ < a < b <∞.
There exist numbers c, ξ such that c < a and ξ > 0, which satisfy the following inequal-

ities:

(4.27)
(4K2

α2e
Mg +

2KMg

α

)
e−α(a−c) <

ϵ

2
,

and

(4.28)
(4K2

α2e
ξ +

Kξ(1 + L)

α

)
e−α(b−c) <

ϵ

2
.
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According to condition (C5), it is true that ∥A(t + tk) − A(t)∥ < ξ, and ∥G(u, t + tk) −
G(u, t)∥ < ξ for t ∈ [c, b] for sufficiently large k. Next, we have that

∥ΨG(u, t, y(u, t+ tk))−ΨG(u, t, y(u, t))∥ =

∥
∫ t

−∞
X(t+ tk, s+ tk)G(u, s+ tk, y(u, s+ tk))ds−

∫ t

−∞
X(t, s)G(u, s, y(s))ds∥ ≤∫ t

−∞

(
∥X(t+ tk, s+ tk)−X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))∥+

∥X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))−G(u, s+ tk, y(u, s))∥+

∥X(t, s)∥∥G(u, s+ tk, y(u, s))−G(u, s, y(u, s))∥
)
ds.

Consider the last integral on two intervals (−∞, c) and [c, t]. Using inequalities (4.27) and
(4.28) we get that

I1 =

∫ c

−∞

(
∥X(t+ tk, s+ tk)−X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))∥+

∥X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))−G(u, s+ tk, y(u, s))∥+

∥X(t, s)∥∥G(u, s+ tk, y(u, s))−G(u, s, y(u, s))∥
)
ds ≤∫ c

−∞

(2K2

αe
e−

α
2 (t−s)Mg +Ke−α(t−s)(2Mg + 2Mg)

)
ds ≤(4K2

α2e
Mg +

2KMg

α

)
e−α(a−c) <

ϵ

2
,

and

I2 =

∫ t

c

(
∥X(t+ tk, s+ tk)−X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))∥+

∥X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))−G(u, s+ tk, y(u, s))∥+

∥X(t, s)∥∥G(u, s+ tk, y(u, s))−G(u, s, y(u, s))∥
)
ds ≤∫ t

c

(2K2

αe
e−

α
2 (t−s)ξ +Ke−α(t−s)(ξ + Lξ)

)
ds ≤(4K2

α2e
ξ +

Kξ(1 + L)

α

)
e−α(b−c) <

ϵ

2
,

for all t ∈ [a, b]. From inequalities (4.27) to (4.28) it follows that ∥ΨG(u, t, y(u, t + tk)) −
ΨG(u, t, y(u, t))∥ < ϵ for t ∈ [a, b]. Therefore, ΨG(u, t, y(u, t+ tk)) uniformly converges to
ΨG(u, t, y(u, t)) on the bounded interval of R.

Let us prove the separation property of the function y(u, t). According to condition
(C5), the function G(u, t, x) is unpredictable in t, and there exists positive numbers δ
and ϵ0 such that ∥G(u, t + tk, x) − G(u, t, x)∥ > ϵ0 for t ∈ [sk − δ, sk + δ]. Denote K0 =
inf{∥X(t, s) : t > s}∥. One can find numbers l ∈ N and δ1 > 0 which satisfy the following
inequalities

δ1 < δ,(4.29)

∥X(t+ tk, s+ tk)−X(t, s)∥ ≤ ϵ0
l
, t ∈ R, |s| < δ1,(4.30)

δ1(K0 −
Mg

l
− KL

α
) >

3

2l
,(4.31)
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∥y(u, t+ s)− y(u, t)∥ ≤ ϵ0
4l
, t ∈ R, |s| < δ1y(4.32)

Assume that the numbers l, δ1 and k ∈ N are fixed. Denote by ∆ the value of ∥y(u, sk +
tk)− y(u, sk)∥, and consider two alternative cases: (1) ∆ ≥ ϵ0

l , and (2) ∆ < ϵ0
l .

(1) If ∆ ≥ ϵ0
l , it is easily find, from (4.32), that

∥y(u, t+ tk)− y(u, t)∥ ≥ ∥y(u, sk + tk)− y(u, sk)∥ − ∥y(u, sk)− y(u, t)∥ −

∥y(u, t+ tk)− y(u, sk + tk)∥ >
ϵ0
l
− ϵ0

4l
− ϵ0

4l
=
ϵ0
2l
,

for t ∈ [sk − δ1, sk + δ1].
(2) Applying the relation

y(u, t+ tk)− y(u, t) = y(u, sk + tk)− y(u, sk) +∫ t

sk

X(t+ tk, s+ tk)G(u, s+ tk, y(u, s+ tk))ds−∫ t

sk

X(t, s)G(u, s, y(u, s))ds = y(u, sk + tk)− y(u, sk) +∫ t

sk

[X(t+ tk, s+ tk)−X(t, s)]G(u, s+ tk, y(u, s+ tk))ds+∫ t

sk

X(t, s)[G(u, s+ tk, y(u, s+ tk))−G(u, s, y(u, s+ tk))]ds+∫ t

sk

X(t, s)[G(u, s, y(u, s+ tk))−G(u, s, y(u, s))]ds,

and inequalities (4.29)-(4.32), one can obtain that

∥y(u, t+ tk)− y(u, t)∥ ≥
∫ t

sk

∥X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))−G(u, s, y(u, s+ tk))∥ds−∫ t

sk

∥X(t+ tk, s+ tk)−X(t, s)∥∥G(u, s+ tk, y(u, s+ tk))∥ds−∫ t

sk

∥X(t, s)[G(u, s, y(u, s+ tk))−G(u, s, y(u, s))]∥ds− ∥y(u, sk + tk)− y(u, sk)∥ >∫ t

sk

K0ϵ0ds−
∫ t

sk

Mgϵ0
l

ds−
∫ t

sk

Ke−α(t−s)Lϵ0ds−
ϵ0
l
≥

δ1K0ϵ0 − δ1
Mgϵ0
l

− δ1
KLϵ0
α

− ϵ0
l
>
ϵ0
2l
,

for each t ∈ [sk, sk + δ1]. Thus, the function y(t) satisfies the separation property and is
alpha unpredictable. Following the Definition 4.9 one can conclude that the solution y(t)
of the system (4.22) is operational almost periodic alpha unpredictable function. □

4.1. Numerical examples.

Example 4.4. Consider the following quasilinear system,

x′1 = (−4 + sin(2t))x1 + 0.4Θ(t)(0.2 cos(t) + 0.3 sin(
√
5t)) + arctan(x2)

x′2 = (−3 + cos(t))x2 + 0.6Θ(t)(0.1 cos(2t)− cos(
√
2t)) + 2 arctan(x1),(4.33)
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where Θ(t) is the alpha unpredictable function Θ(t) with the step of length h = 8π, described
above in (2.2),

A(t) =

(
−4 + sin(2t) 0

0 −3 + cos(t)

)
,

g(t) =

(
0.4Θ(t)(0.2 cos(t) + 0.3 sin(

√
5t)) + arctan(x2)

0.6Θ(t)(0.1 cos(2t)− cos(
√
2t)) + 2 arctan(x1)

)
.

The matrix A(t) is 2π−periodic, the degree of periodicity ∇ = 0.25. All conditions of the Theorem
4.2 are satisfied with L = 2, K = 1, ρ1 = e−8π, ρ2 = e−4π, α = 4π, M = 2.02 and H = 0.5.
The coordinates of the solution x(t) for the system (4.33) with the initial conditions x1(0) = 0 and
x2(0) = 0 are illustrated in Figure 5. The degree of unpredictability is less than one, which sup-
ports the claim made in [6] that alpha unpredictability dominates over regularity, specifically with
regard to almost periodicity. In other words, the concept of characteristic implementation, which
observes the contributions of regularity and chaos in individual motions, proves to be effective not
only in the periodic case but also for almost periodic components.
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FIGURE 5. The coordinates of the solution x(t) of system (4.33), which
asymptotically converge to the coordinates of the operational almost pe-
riodic alpha unpredictable solution.

Example 4.5. In the next quasilinear system,

x′1 = (−4 + sin(2πt))x1 + 0.4Θ(t)(0.2 cos(πt) + 0.3 sin(
√
5πt)) + arctan(x2)

x′2 = (−3 + cos(πt))x2 + 0.6Θ(t)(0.1 cos(2πt)− cos(
√
2πt)) + 2 arctan(x1),(4.34)

the matrix A(t) is 2π−periodic, the degree of periodicity ∇ = 1. The coordinates of the solution
x(t) of the system (4.33) with the initial conditions x1(0) = 0 and x2(0) = 0, which asymptot-
ically converge to the coordinates of operational almost periodic alpha unpredictable solution are
illustrated in Figure 6.

Example 4.6. In the following system,

x′1 = (−4 + sin(0.2t))x1 + 0.4Θ(t)(0.2 cos(0.1t) + 0.3 sin(0.1
√
5t)) + arctan(x2)

x′2 = (−3 + cos(0.1t))x2 + 0.6Θ(t)(0.1 cos(0.2t)− cos(0.2
√
2t)) + 2 arctan(x1),(4.35)

The matrix A(t) is 20π-periodic, with a periodicity degree of ∇ = 200. Figure 7 shows the time
series of the coordinates x1(t) and x2(t) for the solution x(t) of the system outlined in (3.19), given
the initial conditions x1(0) = 0 and x2(0) = 0. Due to the high degree of periodicity, the almost
periodicity (or quasiperiodicity) remains evident and is not overshadowed by chaotic behaviour.
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FIGURE 6. The coordinates of the solution x(t) of system (4.34).
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FIGURE 7. The time series of the coordinates x1(t) and x2(t) of the solu-
tion x(t) of system (4.35), which asymptotically converge to the coordi-
nates of operational almost periodic alpha unpredictable solution.

5. CONCLUSION

The demands of modern science and technology can be addressed through functions
that describe the motions of models, combining constructive properties with sophisticated
behaviors. These needs have expanded to include the analysis of brain activity and ad-
vancements in artificial intelligence, particularly in machine learning and deep learning.

This study focuses on operational definitions of functions, emphasizing that the foun-
dational aspects of activity depend on a detailed structural description of algorithms. The
approach is centered around almost periodic and alpha unpredictable functions, defined
operationally. It utilizes the experience of quasi-periodicity derived by diagonalization of
periodicity on several arguments. Accordingly, one can be guided by this in the further
development of the theory.
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To say concretely, operational almost periodic and alpha unpredictable components
within the solutions of linear and quasi-linear differential equations have been identified.
These components create a functional dependence on the diagonal that could significantly
enhance research on complexity in many challenging problems. The theoretical novelties
are presented analytically and illustrated graphically and numerically by specific dynam-
ics.
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