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Amenable gyrogroups and their fixed-point property”

TEERAPONG SUKSUMRAN'! AND JATURON WATTANAPAN?Z3

ABSTRACT. Anamenable group is a group that possesses a left-invariant mean and, furthermore, satisfies the
Markov-Kakutani Fixed-Point Theorem (also known as Day’s Fixed-Point Theorem). In this article, we examine
gyrogroups that satisfy the Markov—Kakutani-Day fixed-point property, and also give a characterization of
amenable groups related to a fixed-point property.

1. INTRODUCTION

The Brouwer fixed-point theorem, given in [2], is undeniably among the most renowned
results in fixed-point theory. It says that any continuous function from a closed ball in
n-dimensional Euclidean space to itself must have a fixed-point. This theorem has had
far-reaching implications, with applications spanning differential equations, game the-
ory, and economics. Its success paved the way for later generalizations. For example, the
theorem is extended to infinite-dimensional Banach spaces and to locally convex topolog-
ical vector spaces for continuous functions on compact convex subsets by Schauder [9]
and Tychonoff [15], respectively. For a brief summary of the development of fixed-point
theory, we refer the reader to [7].

In the 1930s, rather than a fixed-point of a single function, a common fixed-point of a
family of functions was starting to gain attention as well. Early contributions by Markov
and Kakutani [5] focused on fixed-points for families of commuting continuous affine
transformations. This line of research later gained prominence as Day [3,4] demonstrated
its connection to the concept of amenable (semi)groups.

The Markov—Kakutani Fixed-Point Theorem, also called Day’s Fixed-Point Theorem,
states in a modern approach that if a group G acts on a compact convex set K in a Haus-
dorff locally convex topological vector space by continuous affine transformations, that
is, if the induced function g : k — g - k, k € K, is continuous and g - (tk; + (1 — t)k2) =
t(g k1) + (1 —t)(g- ko) forall ki, ks € K,0 <t <1landforall g € G, then G has a com-
mon fixed point in K. It turns out that this is equivalent to saying that G is amenable as
stated in [14, Theorem 12.11]. Therefore, a strong connection between amenability and a
fixed-point property exists. In [18], the authors extend the notion of being amenable to the
case of gyrogroups, and then give a characterization of amenable gyrogroups related to
Tarski’s Theorem. This motivates us to continue to study the property of being amenable
in connection with a fixed-point property for gyrogroups.

Loosely speaking, a gyrogroup, coined by Ungar, is an algebraic group-like structure
whose operation is in general non-associative. Gyrogroups have been shown to have
strong connections to groups, with many group-related results naturally extending to
gyrogroups. One of the most prominent examples of a gyrogroup is the complex Mobius
gyrogroup [17], which consists of the open unit disk D = {z € C : |z| < 1} in the complex
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plane endowed with Mobius addition @5 defined by a &5 b = % forall a,b € D. Its

gyroautomorphisms represent rotations of the disk. Moreover, Mobius addition induces
Mobius transformations on the disk, which justifies the name of the gyrogroup.

2. PRELIMINARIES

In this section, we collect terminology and basic facts that will be used later on. See,
for instance, [10,16,18] for further details. Recall that a homomorphism between gyrogoups
is defined as a function that preserves the gyrogroup operations. A subgyrogroup K of a
gyrogroup G is normal if K = ¢~ *({e}), where ¢ is a gyrogroup homomorphism from G to
H and e is the identity of H. Let (G, @) be a gyrogroup, and let a, b, c be elements in G. As
in [11], the associator of a, b, and c is defined by [a, b, ¢] = S(a®(b®c))B((a®b)Sc). Denoted
by G* the smallest normal subgyrogroup containing all the associators of elements from
G. It is proved in Proposition 3.1 of [11] that the quotient gyrogroup G/G* is, in fact, a
group called the associativization of G. The importance of the associativization of G lies in
the following universal property.

Theorem 2.1 (Theorem 3.1 of [11]). Suppose that ¢ is a homomorphism from a gyrogroup G to
a group I'. Then there exists a unique homomorphism @ from G/G* to I" such that ¢ o m = ¢.
Here,  is the canonical projection given by w(a) = a @ G® for all a € G. In fact, ¢ is given by
?(a®G*) = p(a) forall a € G.

An action of a gyrogroup G on a non-empty set X is a function from G x X to X, written
a-x for its image of (a,x) € Gx X, suchthate-xz = zforallz € X and a-(b-z) = (a®b) -z
forall a,b € G,z € X. A global fixed-point of the action of G on X is defined as a point = in
X such thata -z = z for all € G [12]. One of the fundamental consequences of Theorem
2.1 is that we can study a gyrogroup action of a gyrogroup G via studying the group
action of G/G* and vice versa. More precisely, if a gyrogroup G acts on a non-empty set
X, then the group G/G* also acts on X by the formula

(2.1) (a®dG") -z=a-x

foralla € G and for all z € X. Similarly, Equation (2.1) can be used to induce a gyrogroup
action of G in a natural way whenever the group action of G/G* is given.

The notion of amenability is extended to the case of gyrogroups in [18]. Recall that a
gyrogroup G is amenable if it admits a left-invariant finitely additive probability measure.
The following theorem collects basic properties of amenable gyrogroups, which will prove
useful in the sequel.

Theorem 2.2 (Theorem 3.6 of [18]). Let G be a gyrogroup.

(1) Finite gyrogroups are amenable.

(2) Any non-zero measure subgyrogroup of an amenable gyrogroup is amenable.

(3) If N is a normal subgyrogroup of G and G is amenable, then G /N is amenable.

(4) If N is a normal subgyrogroup of G such that N and G/N are amenable, then G is
amenable.

(56) Let {G,}ic1 bea collection of amenable subgyrogroups of a gyrogroup H. If forall i, j € I,

there is an index k € I such that G;,G; C Gy, then the gyrogroup G = |J G, is
i€l
amenable.
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3. MAIN RESULTS
3.1. Basic properties of amenable gyrogroups. In this section, we follow [18] to prove a

few elementary properties of amenable gyrogroups, including the existence and unique-
ness of a maximal normal amenable subgyrogroup sitting inside a given gyrogroup.

Proposition 3.1. Let G1,Go, ..., G, be amenable gyrogroups. Then the direct product H G is
i=1
amenable.

Proof. Recall that if G and H are gyrogroups, then (G x H)/({e} x H) = G. Hence, if
G and H are amenable, then {e} x H and (G x H)/({e} x H) are amenable. By part 4
of Theorem 2.2, G x H is amenable. Thus, the proposition follows from the principle of
mathematical induction. O

Proposition 3.2. Let {G; | i € I} be a non-empty collection of amenable gyrogroups. Then the

weak direct product || G; is amenable.
iel

Proof. The collection F of finite product of G;’s, by Proposition 3.1, satisfies the condition

in part 5 of Theorem 2.2. Therefore, [[ G; = |J F is amenable. O
i€l

We remark that an arbitrary direct product [, ; G; of amenable gyrogroups need not
be amenable because there is a counter-example in the case of groups; see, for instance, [6,
p- 261]. The next theorem shows that an arbitrary gyrogroup contains a unique largest
normal amenable subgyrogroup. Its proof applies the Second Isomorphism Theorem for
gyrogroups as well as Zorn’s Lemma. We begin with proving the following lemma, which
is an important property of gyrogroups.

Lemma 3.1. Let A and B be normal subgyrogroups of a gyrogroup G. Then (AU B) = A® B
and A @ B <G.
Proof. Obviously, A® B C (AU B). Since A, B < G, we obtain that
(AeB)e(AeB)=((AeB)®A) @B
—((A®A)®oB) @B
=A@ (B® B)
= A®B.

Furthermore, (A ® B) = 6B A = B® A = A® B. This shows that A ® B is a
subgyrogroup of G. It follows that (AU B) = A @ B. Now, let g, h € G. Then

(9o (AeB))oh=((9geB)®A)Ddh
(geB)dh)@d A
=((geh)eB)® A
=(g®h)®(BaA)
= (
)

gDh)®(A® B).
Similarly, one can show that g & (A® B)® h) = (¢ ® h) ® (A& B). Hence, A @ B forms
a normal subgyrogroup of G. O

Theorem 3.3. Every gyrogroup G has the largest normal amenable subgyrogroup. In other words,
there exists a normal amenable subgyrogroup H of G such that if K is a normal amenable sub-
gyrogroup of G, then K C H.
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Proof. Let N be the collection of normal amenable subgyrogroups of G. For A,B € N,
define A < B if and only if A C B. Then (N, <) is a partially ordered set. Part 5 of
Theorem 2.2 implies that every chain in A has an upper bound in NV. By Zorn’s Lemma,
there is a normal amenable subgyrogroup H of G not contained in another element of
N. Suppose that X € N, and assume that X ¢ H. By Lemma 3.1, X & H is a normal
subgyrogroup of G containing H. By the Second Isomorphism Theorem (see Theorem 33
of [10]), (X ¢ H)/H = X/(X N H). By part 3 of Theorem 2.2, X/(X N H) is amenable, and
sois (X @ H)/H. By part 4 of Theorem 2.2, X & H is amenable, a contradiction. O

As a consequence of Theorem 3.3, the largest normal amenable subgyrogroup of the
complex Mobius gyrogroup is either the trivial subgyrogroup or itself. This fact can be
proved by applying the following proposition, which is important in its own right.

Proposition 3.3. There is no non-trivial proper normal subgyrogroup of the complex Mdobious
gyrogroup D.

Proof. Suppose that NV is a non-trivial normal subgyrogroup of . Hence, as in the proof of
Proposition 35 of [10], gyr [a, b](IN) = N for all a,b € D. Since the gyroautomorphisms of
D generate the rotation group of D (see Example 1 of [13]), if z € N, then S(z) C N, where
S(z) denotes the circle in C centered at 0 containing z. Next, let z # 0 be an element of V.
Then x @ S(x) C N.Since 0 = z ©z and 22 = 2 @ x, we have 0,2z € z @ S(z) C N. Since
the modulus function and left gyrotranslation L, are continuous and S(z) is connected,
for each r with 0 < r < |2z|, there is an element y € S(z) such that |z & y| = r by the
Intermediate Value Theorem. This shows that B(0, |2z|) C N. It follows from Proposition
7 of [1] that N is an open and a closed subgyrogroup of D, which implies that N =D. O

In light of Proposition 3.3, it follows that the complex Mobious gyrogroup is indeed a
concrete example of a simple gyrogroup, which is defined as a gyrogroup without non-
trivial proper normal subgyrogroups.

3.2. Fixed-point property and amenability. Next, we will examine a strong connection
between amenability and a fixed-point property of gyrogroups. Inspired by the Markov-
Kakutani Fixed-Point Theorem as well as Day’s Fixed-Point Theorem, we formulate the
following definition for gyrogroups.

Definition 3.1. A gyrogroup G is said to have the Markov—Kakutani—Day fixed-point property if
whenever G acts on a compact convex set K in a Hausdorff locally convex topological vector space
by continuous affine transformations, that is, if the induced function g : k — g-k, k € K, is
continuous and g - (tk1 + (1 — t)ka) =t(g - k1) + (1 —t)(g - ko) forall ki, ks € K, 0 <t <1
and for all g € G, then there is a global fixed-point of the action of G on K.

In view of Definition 3.1, a group is amenable if and only if it satisfies the Markov—
Kakutani-Day fixed-point property. In this section, we aim to generalize this result to the
case of gyrogroups.

Theorem 3.4. If a gyrogroup G is amenable, then it has the Markov—Kakutani—-Day fixed-point
property.

Proof. Suppose that G is an amenable gyrogroup. By part 3 of Theorem 2.2, the group
G/G* is amenable. Let K be a compact convex set in a Hausdorff locally convex topo-
logical vector space. Suppose that ¢ : G — Sym (K) is a gyrogroup action by continuous
affine transformations of G on K. In a similar fashion to the proof of Theorem 3.4 of [8],
the group G/G* acts on K by continuous affine transformations. Thus, a global fixed-
point k in K of the action of G/G* on K exists as above. The point £ is also a global
fixed-point of the action of G on K, which completes the proof. O
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It is an open question whether the converse of Theorem 3.4 holds. However, a partial
converse is presented below.

Theorem 3.5. If a gyrogroup G has the Markov—Kakutani-Day fixed-point property, then G /G*
is amenable.

Proof. Since every group action of G/G* induces a gyrogroup action of G on the same
set by the same formula, it follows that G/G* has the Markov-Kakutani-Day fixed-point
property. Since G/G* is a group, G/G? is amenable as above. O

The main result of this section, which is a characterization of amenable gyrogroups
related to a fixed-point property in a suitable way, is proved in the following theorem.
It is proved in [18] that a gyrogroup G is amenable if and only if it satisfies the F¢lner’s
condition. That is, G is amenable if and only if for each finite subset ' of G and for each
€ > 0, there exists a non-empty finite subset F' of G such that |(g & F)AF| < ¢|F)| for all
g € E. For any gyrogroup G, let S be the set of all finite subsets of G. Define a partial
order on S x Nby (E1,n1) < (Es,n9) if B4 C Ey and n; < no. If G is amenable, for each
(E,n) € S x N, let F g ) be a non-empty finite subset of G such that

‘F En |
forall g € E. Then {F(g n)}(E,n)esxn is a net in S with the property

|F(E,n)|

forall g € G. A netin S that satisfies 3.2 is called a Felner’s net and it is not hard to see
that a gyrogroup is amenable if and only if it admits a F¢lner net.

(3.2) 0

Theorem 3.6. Let G be a gyrogroup. Then the following statements are equivalent.

(1) G is amenable.

(2) For any compact convex subset K of a Hausdorff locally convex topological vector space
E, ifa function - : G x K — K satisfies the following properties:

(i) the function k — x - k is a continuous affine function from K to K forall z € G,
and

(ii) there is a point ko € K such that x - (y - ko) = (x D y) - ko forall x,y € G,
then G admits a global fixed-point in K.

Proof. Suppose that G is amenable. Let {F; };c; be a Félner’s net. For each i € I, define

1
|Fi‘Zf'k‘o-

feF;

ki =

Then {k;};cs is a netin K. Since K is compact, we may assume that {k;},c; converges to
a point k of K. We will show that & is a global fixed-point of G. Now, let g € G, to show
that g - k = k, it suffices to show that (g - k) = (k) for all ¢ € E*. Observe that

o S fokl||= S el k) S\( )\ Fil
|Fi| . |Fi| . | F3
fe(g®Fi)\F; FE(g®F:)\F;

for some constant M > 0. It follows that

1
" re(g@F\F;
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In similar fahsion, we obtain that

1

FEF\(9®F:)

Thus, the following series of equality holds:
plg- k) = lim o(g - ki)

. 1
= Jim > elg- (f ko))

11— 00

—lim — 3" (9@ f) - ko)

1—00 |Fz| feF,
) 1
= lim o(f - ko)
goDF;
. 1 . 1
Y re(g@F)\F; " re(g@F)NE;
. 1 . 1
=fm | > ek [+ lim | Y S k)
Y e RN\ (9O F;) " fe(g@F)NF;
. 1
- zlglolo |F3 (S o)
feF:

= p(k).

Conversely, assume that the above conditions hold. Recall that the set of all means on
[°(G), denoted by M(G), is a compact convex subset of {*°(G)* in weak*-topology. For
each z € G and for each mean m on [*°(G), define a function « - m : [*°(G) — R by the
formula (z-m)(f) = m(foL,) forall f € {°°(G). Itis not difficult to see that = - m is also a
mean on [*°(G), and that m — « - m is continuous affine. Now, let §, be the mean defined
by é.(f) = f(e) for all f € [°°(G). Then we obtain that = - (y - d.) = (z D y) - 0, for all
z,y € G. By assumption, there exists a mean y € M(G) that thatz -y = pforallz € G,
and so y is a left-invariant mean on [*°(G). O
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