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A Double Inertial Fixed Point Algorithm with Linesearch
and Its Application to Machine Learning for Data
Classification
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ABSTRACT. In this paper, we introduce and study a new accelerated common fixed point algorithm based on
the viscosity approximation, double inertial, and linesearch technique. The convergence properties and practical
applications of the proposed algorithm are explored, highlighting its effectiveness in solving bilevel optimiza-
tion problems and its potential in machine learning for data classification. Based on our experiment, it is found
that our proposed algorithm has superior convergence behaviour than the existing algorithms in the literature.

1. INTRODUCTION

Fixed point theory is a fundamental concept in mathematics and applied sciences, of-
fering powerful tools for analyzing and solving a wide range of problems. A point x ∈ X
is a fixed point of T : X → X , where X is a nonempty set if Tx = x. On the other hand,
optimization focuses on finding an optimal solution to a given problem under specific
constraints and has applications in areas such as machine learning, supply chain man-
agement, and financial modeling. By combining fixed point theory with optimization, re-
searchers have developed various algorithms that effectively solve complex optimization
problems. In fact, many optimization problems, including convex and bilevel optimiza-
tion, can be transformed into fixed point problems, making this approach particularly
efficient and versatile.

The convex bilevel optimization problem consists of an outer-level minimization prob-
lem, defined as

(1.1) min
x∈Γ

ϕ(x),

where ϕ is a strongly convex and differentiable function from a real Hilbert space H to R
, and Γ represents the set of minimizers of the inner-level problem:

(1.2) argmin
x∈H

{f(x) + g(x)},

where f : H → R is a convex and differentiable function, and g ∈ Γ0(H), the set of proper,
lower semicontinuous, and convex functions from H to R.

It is well-known that, if x∗ ∈ Γ is a solution of (1.2) then

(1.3) 0 ∈ ∇f(x∗) + ∂g(x∗).

Moreover, we know that

x∗ is a solution of (1.3) ⇐⇒ x∗ = proxag(x
∗ − a∇f(x∗)),
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where a > 0 and proxag(y) = argmin
x∈H

{g(x) + 1
2a∥x − y∥22}. It is known that proximal

gradient mapping T := proxαg(I − α∇f) is nonexpansive if a ∈ (0, 2
Lf

) where Lf is a
Lipschitz constant of ∇f, and its fixed point set is argmin

x∈H
{f(x) + g(x)}. From above fact,

we see that the set of all common fixed points of Tn := proxαng(I − αn∇f) is Γ, the set of
minimizers of Problem (1.2).

Furthermore, x ∈ Γ is a solution for problem (1.1) if the following variational inequality
holds:

⟨∇ϕ(x), y − x⟩ ≥ 0, ∀y ∈ Γ.

This means that solving the bilevel problem (1.1) is equivalent to finding a fixed point
of Tn. Hence, fixed point theory is one of the the most effective tools for this kind of
problem, see [1–3].

To approximate the optimal solution for Problems (1.1), Sabach and Shtern [4] con-
structed an algorithm, called BiG-SAM (Bilevel Gradient Sequential Averaging Method) which
was defined as follows:

Algorithm 1 BiG-SAM

Input: x1 ∈ Rm, γn ∈ (0, 1), αn ∈ (0, 1
Lf

) and s ∈ (0, 2
Lϕ+σ ) where Lf and Lϕ are the

Lipschitz constants of ∇f and ∇ϕ, respectively.
Compute: {

yn = proxαng(xn − αn∇f(xn)),

xn+1 = γn(xn − s∇ϕ(xn)) + (1− γn)yn, n ≥ 1.

They showed that xn → x ∈ Ω, where ω is the set of all solutions of Problems (1.1).
Later, Shehu et al. [5] introduced the algorithm iBiG-SAM (inertial Bilevel Gradient Se-

quential Averaging Method) for accelerating the convergence rate of Algorithm 1 by using
inertial technique that was proposed by Polyak [6].

Algorithm 2 iBiG-SAM

Input: x0, x1 ∈ Rm, α ≥ 3, γn ∈ (0, 1), αn ∈ (0, 2
Lf

), s ∈ (0, 2
Lϕ+σ ] where Lf and Lϕ are

the Lipschitz constants of ∇f and ∇ϕ, respectively.
For n ≥ 1 :
Choose: θn ∈ [0, θ̄n] where θ̄n is defined by

θ̄n :=

{
min{ n−1

n+α−1 ,
τn

∥xn−xn−1∥}, if xn ̸= xn−1,
n−1

n+α−1 , otherwise.

Compute: 
yn = xn + θn(xn − xn−1),

tn = proxαng(yn − αn∇f(yn)),

wn = yn − s∇ϕ(yn),

xn+1 = γnwn + (1− γn)tn.

Under conditions that

(1.4) lim
n→∞

γn = 0 and
∞∑

n=1

γn = ∞,
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They also proved that xn → x ∈ Ω.
After that, in order to accelerate the convergence of Algorithm 2, Duan and Zhang [7]

introduced the following three algorithms, namely Algorithm 3, Algorithm 4 and Algo-
rithm 5.

Algorithm 3 aiBiG-SAM: The alternated inertial Bilevel Gradient Sequential Averaging
Method

Input: x0, x1 ∈ Rm, α ≥ 3, ξ > 0, αn ∈ (0, 2
Lf

), s ∈ (0, 2
Lϕ+σ

] where Lf and Lϕ are the Lipschitz
constants of ∇f and ∇ϕ, respectively. Let {γn} be a sequence in (0, 1) such that satisfies (1.4).
For n ≥ 1 :
Step 1. Compute:

yn =

{
xn + θn(xn − xn−1), if n is odd,
xn, otherwise.

When n is odd, choose θn such that 0 ≤ |θn| ≤ θ̄n with θ̄n defined by

θ̄n :=

{
min{ n

n+α−1
, τn
∥xn−xn−1∥

}, if xn ̸= xn−1,
n

n+α−1
, otherwise.

When n is even, θn = 0.
Step 2. Compute: 

tn = proxαng(yn − αn∇f(yn)),

wn = yn − s∇ϕ(yn),

xn+1 = γnwn + (1− γn)tn.

Step 3. If ∥xn − xn−1∥ < ξ, then stop. Otherwise, set n = n+ 1 and go to Step 1.

Algorithm 4 miBiG-SAM: The multi-step inertial Bilevel Gradient Sequential Averaging
Method

Input: x0, x1 ∈ Rm, α ≥ 3, ξ > 0, αn ∈ (0, 2
Lf

), s ∈ (0, 2
Lϕ+σ

] where Lf and Lϕ are the Lipschitz
constants of ∇f and ∇ϕ, respectively. Let {γn} be a sequence in (0, 1) such that satisfies (1.4).
For n ≥ 1 :
Step 1. Given xn, xn−1, . . . , xn−q+1 and compute

yn = xn +
∑
i∈Q

θi,n(xn−i − xn−1−i),

where Q = {0, 1, . . . , q − 1}. Choose θi,n such that 0 ≤ |θi,n| ≤ θ̄n with θ̄n defined by

θ̄n :=

{
min{ n

n+α−1
, τn∑

i∈Q ∥xn−i−xn−1−i∥
}, if

∑
i∈Q ∥xn−i − xn−1−i∥ ̸= 0,

n
n+α−1

, otherwise.

Step 2. Compute: 
tn = proxαng(yn − αn∇f(yn)),

wn = yn − s∇ϕ(yn),

xn+1 = γnwn + (1− γn)tn.

Step 3. If ∥xn − xn−1∥ < ξ, then stop. Otherwise, set n = n+ 1 and go to Step 1.
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Algorithm 5 amiBiG-SAM: The multi-step alternative inertial Bilevel Gradient Sequential
Averaging Method

Input: x0, x1 ∈ Rm, α ≥ 3, ξ > 0, αn ∈ (0, 2
Lf

), s ∈ (0, 2
Lϕ+σ

] where Lf and Lϕ are the Lipschitz
constants of ∇f and ∇ϕ, respectively. Let {γn} be a sequence in (0, 1) such that satisfies (1.4).
For n ≥ 1 :
Step 1. Given xn, xn−1, . . . , xn−q+1 and compute

yn =

 xn +
∑
i∈Q

θi,n(xn−i − xn−1−i), if n is odd,

xn, otherwise,

where Q = {0, 1, . . . , q − 1}. When n is odd, choose θi,n such that 0 ≤ |θi,n| ≤ θ̄n with θ̄n
defined by

θ̄n :=

{
min{ n

n+α−1
, τn∑

i∈Q ∥xn−i−xn−1−i∥
}, if

∑
i∈Q ∥xn−i − xn−1−i∥ ≠ 0,

n
n+α−1

, otherwise.

When n is even, θn = 0.
Step 2. Compute: 

tn = proxαng(yn − αn∇f(yn)),

wn = yn − s∇ϕ(yn),

xn+1 = γnwn + (1− γn)tn.

Step 3. If ∥xn − xn−1∥ < ξ, then stop. Otherwise, set n = n+ 1 and go to Step 1.

In comparison to Algorithm 1 and Algorithm 2, they demonstrated that the conver-
gence behavior of Algorithm 3, Algorithm 4, and Algorithm 5 was better. We observed
that Algorithm 1 - Algorithm 5 were introduced by using a fixed point technique. Af-
ter that, viscosity approximation and some fixed point methods together with the inertial
technique were employed to construct accelerated algorithm for solving convex bilevel
optimization, see [8–11].

It is seen in Algorithm 1 - Algorithm 5 that the Lipschitz continuity condition on ∇f
must be assumed and that the Lipschitz constant Lf determines the stepsize αn. The
Lipschitz constant Lf can be challenging to find, though. Therefore, we shall develop an
algorithm whose stepsize is independent from the Lipschitz constants ∇f . In order to,
overcome this difficulty, Cruz et al. [12] substituted weak assumptions for the Lipschitz
continuity condition on ∇f , as described below:

Assumption 1.1.
(A1) f : H → R is a convex and differentiable function and the gradient ∇f is uniformly contin-
uous on H;

(A2) g : H → R is a proper lower semicontinuous and convex function.

We see that the Assumption 1.1 (A1) is a weaker condition than the Lipschitz continuity
condition on ∇f . Moreover, they proposed an linesearch method for choosing the step-
size αn that is not depend on any Lipschitz constants.

Linesearch 1.1. Given x, σ > 0, θ ∈ (0, 1) and δ ∈ (0, 1
2 ).

Input. Set α = σ and J(x, α) := proxαg(x− α∇f(x)) with x ∈ dom g.
While α∥∇f(J(x, α))−∇f(x)∥ > δ∥J(x, α)− x∥ do

α = θα
End While
Output α
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In 2021, Suantai et al. [13] introduced a new linesearch for choosing the stepsize αn as
follows:

Linesearch 1.2. Given x ∈ H, σ > 0, δ > 0, and θ ∈ (0, 1).

Input. Set α = σ.
While α

2 ∥∇f(J2(x, α))−∇f(J(x, α))∥+∥∇f(J(x, α))−∇f(x)∥ > δ(∥J2(x, α)−
J(x, α)∥+ ∥J(x, α)− x∥) do
α = θα
End While
Output α

Using Linesearch 1.2, they introduced a new viscosity forward-backward algorithm
with inertial technique as follows:

Algorithm 6 An accelerated viscosity forward-backward algorithm with Linesearch 1.2

Initialization: Choose x1, x0 ∈ H, σ > 0, δ ∈ (0, 1
8 ) and θ ∈ (0, 1). Take {γn}, {τn} ⊂

(0,∞), and {µn} ⊂ (0,∞).
Iterative steps: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute the inertial step:

(1.5) θn =

{
min{µn,

τn
∥xn−xn−1∥}, if xn ̸= xn−1;

µn, otherwise.,

(1.6) wn = xn + θn(xn − xn−1).

Step 2. Compute the forward-backward step:

(1.7) zn = proxαng(wn − αn∇f(wn))

(1.8) yn = proxαng(zn − αn∇f(zn))

where αn = Linesearch 1.2(wn, σ, θ, δ).
Step 3. Compute the viscosity step:

(1.9) xn+1 = γnF (xn) + (1− γn)yn.

Set n := n+1 and return to Step 1.

They showed that the sequence {xn} generated by Algorithm 6 converges strongly to
x∗ ∈ Ω, the solution set of problems (1.1).

This paper focuses on the combination of fixed point and optimization theory by propos-
ing a new accelerated fixed point algorithm incorporating multiple techniques, including
the viscosity approximation method, inertial, and linesearch technique.

Inspired and motivated by the results of Cruz and Nghia [12], Suantai et al. [13] and
the above-mentioned research, we aim to introduce a new accelerated algorithm using
the basic Linesearch 1.1 together with the viscosity approximation method for solving
the convex bilevel optimization problem (1.1) and apply the obtained result to solving
some data classification problems. Furthermore, comparison of the performance of our
proposed algorithm with the other algorithms are also given.
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The structure of this paper is as follows: Section 2 provides fundamental definitions
and essential lemmas, while Section 3 presents the main theoretical results. Section 4
discusses the implementation of our proposed method for data classification problems,
particularly using diabetes, breast cancer and Hypertension datasets, and includes com-
parison results with other algorithms. Finally, the conclusion of our work is given in 5.

2. PRELIMINARIES AND LEMMAS

Throughout this work, let H be a real Hilbert space and T : H → H a mapping. We use
the notation xn → x to indicate the strong convergence of the sequence {xn} to x ∈ H,
and xn ⇀ x to denote weak convergence.

Definition 2.1. A mapping T : H → H is said to be
(1) Lipschitzian if there exists L ≥ 0 such that

∥Tx− Ty∥ ≤ L∥x− y∥, ∀x, y ∈ H,

(2) k-contraction if T is Lipscitzian with constant k ∈ [0, 1)
(3) nonexpansive if T is Lipscitzian with constant L = 1

Definition 2.2. Let x ∈ H and C be a nonempty closed and convex subset of H. Then there is a
unique point x∗ ∈ C such that

∥x∗ − x∥ ≤ ∥y − x∥, ∀y ∈ C.

Let PC : H → C be defined by PCx = x∗. The mapping PC is known as a metric projection of
H on C.

We know that PC is nonexpansive and satisfies the following inequality

(2.10) ⟨x− PCx, y − PCx⟩ ≤ 0 ∀x ∈ H and y ∈ C

Definition 2.3. Let Γ0(H) be the set of all proper lower semicontinuous and convex functions
f : H → (−∞,+∞]. For g ∈ Γ0(H), the subdifferential ∂g of g is defined by

∂g(x) := {u ∈ H : g(x) + ⟨u, y − x⟩ ≤ g(y), ∀y ∈ H}, ∀x ∈ H.

At this point, we provide a few of the interconnections between the subdifferential
operator and the proximity operator. For x ∈ H and α > 0, we have

(2.11)
x− proxαg(x)

α
∈ ∂g(proxαg(x))

where proxαg = (I + α∂g)−1.
We complete this section by providing helpful lemmas and propositions that support

our main results.

Lemma 2.1 ( [14]). The following holds with x, y ∈ H and λ ∈ [0, 1] :

(1) ∥x± y∥2 = ∥x∥2 ± 2⟨x, y⟩+ ∥y∥2;
(2) ∥x+ y∥2 ≤ ∥x∥2 + 2⟨y, x+ y⟩;
(3) ∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2.

Lemma 2.2 ( [15]). Let h ∈ Γ0(H). Let {xn} and {yn} be two sequences in H such that yn ∈
∂h(xn) for all n ∈ N. If xn ⇀ x and yn → y, then y ∈ ∂h(x).

Lemma 2.3 ( [16]). Let {an} ⊂ R+, {bn} ⊂ R, and {ξn} ⊂ (0, 1) be such that
∞∑

n=1
ξn = ∞ and

an+1 ≤ (1− ξn)an + ξnbn, ∀n ∈ N.
If lim sup

i→∞
bni ≤ 0 for every subsequence {ani} of {an} satisfying

lim inf
i→∞

(ani+1 − ani
) ≥ 0, then lim

n→∞
an = 0.
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3. MAIN RESULTS

In this section, we introduce a new accelerated common fixed point algorithm that
solves convex bilevel optimization problems without any Lipschitz continuity condition
on ∇f . It is modified by developing Algorithm 6 with double inertial technique and
Linesearch 1.1. We then provide a strong convergence result of our proposed algorithm
under specific conditions. Using Assumption 1.1, we now focus on Problems (1.1) and
(1.2). For clarity, let h := f + g. The set of minimizers of the Problem (1.2) is represented
by Γ, and we assume that Γ is nonemty.

Throughout this section, let F : H → H be a k-contraction mapping with k ∈ [0, 1) and
let {γn}, {τn} ⊂ (0,∞), {µn} ⊂ (0,∞) and {ρn} ⊂ (−∞, 0). We start by developing the
algorithm as follows:

Algorithm 7 An double inertial viscosity forward-backward algorithm with linesearch
(DIVFBAL)

Initialization: Choose x1, x0, x−1 ∈ H, σ > 0, δ ∈ (0, 1
8 ) and θ ∈ (0, 1). Take

{γn}, {τn} ⊂ (0,∞), {µn} ⊂ (0,∞) and {ρn} ⊂ (−∞, 0).
Iterative steps: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute the inertial parameters θn and δn by

(3.12) θn =

{
min{µn,

τn
∥xn−xn−1∥}, if xn ̸= xn−1;

µn, otherwise,

and

(3.13) δn =

{
max{ρn, −τn

∥xn−1−xn−2∥}, if xn ̸= xn−1;

ρn, otherwise,

and let

(3.14) wn = xn + θn(xn − xn−1) + δn(xn−1 − xn−2).

Step 2. Compute the forward-backward step:

(3.15) zn = proxαng(wn − αn∇f(wn))

(3.16) yn = proxβng(zn − βn∇f(zn))

where αn = Linesearch1.1(wn, σ, θ, δ) and βn := Linesearch1.1(zn, σ, θ, δ).
Step 3. Compute the viscosity step:

(3.17) xn+1 = γnF (xn) + (1− γn)yn.

Set n := n+1 and return to Step 1.

The following tool is required in order to demonstrate a strong convergence result of
Algorithm 7.

Lemma 3.4. Let {xn} be a sequence generated by Algorithm 7 and x∗ ∈ H. Then the following
inequality holds:

(3.18) ∥wn − x∗∥2 − ∥zn − x∗∥2 ≥ 2αn[h(zn)− h(x∗)] + (1− 2δ)∥zn − wn∥2

(3.19) ∥zn − x∗∥2 − ∥yn − x∗∥2 ≥ 2βn[h(yn)− h(x∗)] + (1− 2δ)∥yn − zn∥2

for all n ∈ N.
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Proof. Let x∗ ∈ H. To prove (3.18), we obtain from (2.11) that

wn−zn
αn

−∇f(wn) ∈ ∂g(zn) for all n ∈ N.
Based on the definition of ∂g(zn), the equation given above yields

(3.20)
g(x∗)− g(zn) ≥ ⟨wn−zn

αn
−∇f(wn), x

∗ − zn⟩
= 1

αn
⟨wn − zn, x

∗ − zn⟩+ ⟨∇f(wn), zn − x∗⟩.

By Assumption 1.1 (AI), we obtain the fact that

(3.21) f(x)− f(y) ≥ ⟨∇f(y), x− y⟩ ∀x, y ∈ H.

From (3.21), we get

(3.22) f(x∗)− f(wn) ≥ ⟨∇f(wn), x
∗ − wn⟩,

and

(3.23) f(wn)− f(zn) ≥ ⟨∇f(zn), wn − zn⟩.

From (3.20) and (3.22), we obtain that
h(x∗)− f(wn)− g(zn)

≥ 1
αn

⟨wn − zn, x
∗ − zn⟩+ ⟨∇f(wn), zn − wn⟩

= 1
αn

⟨wn − zn, x
∗ − zn⟩+ ⟨∇f(wn)−∇f(zn), zn − wn⟩

+⟨∇f(zn), zn − wn⟩
≥ 1

αn
⟨wn − zn, x

∗ − zn⟩ − ∥∇f(wn)−∇f(zn)∥ · ∥zn − wn∥
+⟨∇f(zn), zn − wn⟩.

From α := Linesearch1.1(wn, σ, θ, δ) and (3.23), the above inequality become

(3.24)
1

αn
⟨wn − zn, zn − x∗⟩ ≥ h(zn)− h(x∗)− δ

αn
∥zn − wn∥2 ∀n ∈ N.

By Lemma 2.1 (1), we get

∥wn − x∗∥2 − ∥zn − x∗∥2 ≥ 2αn[h(zn)− h(x∗)] + (1− δ)∥zn − wn∥2 ∀n ∈ N.

Similarly, we have
zn − yn

βn
−∇f(zn) ∈ ∂g(yn),

g(x∗)− g(yn) ≥ ⟨zn − yn
βn

−∇f(zn), x
∗ − yn⟩,

f(x∗)− f(zn) ≥ ⟨∇f(zn), x
∗ − zn⟩,

and
f(zn)− f(yn) ≥ ⟨∇f(yn), zn − yn⟩.

From the above inequalities, we obtain that

h(x∗)− f(zn)− g(yn) ≥ 1
βn

⟨zn − yn, x
∗ − yn⟩+ ⟨∇f(zn), yn − z − n⟩

= 1
βn

⟨zn − yn, x
∗ − yn⟩

+⟨∇f(zn)−∇f(yn), yn − zn⟩
+⟨∇f(yn), yn − z − n⟩

≥ 1
βn

⟨zn − yn, x
∗ − yn⟩

−∥∇f(zn)−∇f(yn)∥ · ∥yn − zn∥
+⟨∇f(yn), yn − z − n⟩

≥ 1
βn

⟨zn − yn, x
∗ − yn⟩

− δ
βn

∥yn − zn∥2 + f(yn)− f(zn).
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It implies that

1

βn
⟨zn − yn, yn − x∗⟩ ≥ h(yn)− h(x∗)− δ

βn
∥yn − zn∥2 ∀n ∈ N.

Again, by Lemma 2.1 (1), we obtain that

∥zn − x∗∥2 − ∥yn − x∗∥2 ≥ 2βn(h(yn)− h(x∗)) + (1− 2δ)∥yn − zn∥2 ∀n ∈ N.

□

Theorem 3.2. Let {xn} ⊂ H be a sequence generated by Algorithm 7. Then:
1). For x∗ ∈ Γ, we have

∥xn+1 − x∗∥ ≤ max{∥xn − x∗∥,
θn
γn

∥xn − xn−1∥+ |δn|
γn

∥xn−1 − xn−2∥+ ∥F (x∗)− x∗∥
1− k

}

2). If the sequence {αn}, {γn}, and {τn} satisfy the following conditions:
2.1). αn ≥ a for some a ∈ R++;

2.2). γn ∈ (0, 1) such that lim
n→∞

γn = 0 and
∞∑

n=1
γn = ∞;

2.3). lim
n→∞

τn
γn

= 0,
then xn → x∗ ∈ Γ, where x∗ = PΓf(x

∗).

Proof. Let x∗ ∈ Γ such that x∗ = PΓf(x
∗). By Lemma 3.4, we have

(3.25) ∥wn − x∗∥2 − ∥zn − x∗∥2 ≥ (1− 2δ)∥zn − wn∥2,

and

(3.26) ∥zn − x∗∥2 − ∥yn − x∗∥2 ≥ (1− 2δ)∥yn − zn∥2.

From (3.25) and (3.26), we get

(3.27)
∥yn − x∗∥ ≤ ∥zn − x∗∥

≤ ∥wn − x∗∥
≤ ∥xn − x∗∥+ θn∥xn − xn−1∥+ |δn| · ∥xn−1 − xn−2∥,

and

(3.28)

∥yn − x∗∥2 ≤ ∥zn − x∗∥2 − (1− 2δ)∥yn − zn∥2
≤ ∥wn − x∗∥2 − (1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]
= ∥xn − x∗∥2 + 2θn⟨xn − x∗, xn − xn−1⟩

+2δn⟨xn − x∗, xn−1 − xn−2⟩
+∥θn(xn − xn−1) + δn(xn−1 − xn−2)

2

−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]
= ∥xn − x∗∥2 + 2θn⟨xn − x∗, xn − xn−1⟩

+2δn⟨xn − x∗, xn−1 − xn−2⟩
+2θnδn⟨xn − xn−1, xn−1 − xn−2⟩
+θ2n∥xn − xn−1∥2 + δ2n∥xn−1 − xn−2∥2
−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]

≤ ∥xn − x∗∥2 + 2θn∥xn − x∗∥ · ∥xn − xn−1∥
+2 |δn| · ∥xn − x∗∥ · ∥xn−1 − xn−2∥
+2θn |δn| · ∥xn − xn−1∥ · ∥xn−1 − xn−2∥
+θ2n∥xn − xn−1∥2 + δ2n∥xn−1 − xn−2∥2
−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2].
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By (3.17) and (3.27), we have

∥xn+1 − x ∗ ∥ ≤ γn∥F (xn)− F (x∗)∥+ γn∥F (x∗)− x∗∥
+(1− γn)∥yn − x∗∥

≤ γn∥xn − x∗∥+ γn∥F (x∗)− x∗∥
+(1− γn)∥yn − x∗∥

= (1− γn(1− k))∥xn − x∗∥+ γn∥F (x∗)− x∗∥
+(1− γn)[θn∥xn − xn−1∥+ |δn| · ∥xn−1 − xn−2∥]

≤ (1− γn(1− k))∥xn − x∗∥+ γn∥F (x∗)− x∗∥
+θn∥xn − xn−1∥+ |δn| · ∥xn−1 − xn−2∥

= (1− γn(1− k))∥xn − x∗∥

+γn(1− k)[
θn
γn

∥xn−xn−1∥+ |δn|
γn

·∥xn−1−xn−2∥+∥F (x∗)−x∗∥
1−k ]

≤ max{∥xn − x∗∥,
θn
γn

∥xn−xn−1∥+ |δn|
γn

·∥xn−1−xn−2∥+∥F (x∗)−x∗∥
1−k }.

Hence, we obtain 1). From (3.12), (3.13) and conditions 2.3), we have

θn
γn

∥xn − xn−1∥ → 0 as n → ∞,

and

|δn|
γn

∥xn−1 − xn−2∥ → 0 as n → ∞.

So there exists positive constants M1 and M2 such that

θn
γn

∥xn − xn−1∥ ≤ M1,

and

|δn|
γn

∥xn−1 − xn−2∥ ≤ M2 ∀n ∈ N.

Thus, for all n ∈ N

∥xn+1 − x ∗ ∥ ≤ max{∥xn − x∗∥, M1+M2+∥F (x∗)−x∗∥
1−k }

...
≤ max{∥x1 − x∗∥, M1+M2+∥F (x∗)−x∗∥

1−k }.

Therefore, {xn} is bounded.
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By Lemma 2.1 (2), (3) and (3.28), we obtain that

∥xn+1 − x ∗ ∥ ≤ ∥(1− γn)(yn − x∗) + γn(F (xn)− F (x∗))∥2
+2γn⟨F (x∗)− x∗, xn+1 − x∗⟩

≤ (1− γn)∥yn − x∗∥2 + γn∥F (xn)− F (x∗)∥2
+2γn⟨F (x∗)− x∗, xn+1 − x∗⟩

≤ (1− γn)∥yn − x∗∥2 + γnk
2∥xn − x∗∥2

+2γn⟨F (x∗)− x∗, xn+1 − x∗⟩
≤ (1− γn)

[
∥xn − x∗∥2 + 2θn∥xn − x∗∥ · ∥xn − xn−1∥

+2 |δn| · ∥xn − x∗∥·∥xn−1 − xn−2∥
+2θn |δn|·∥xn − xn−1∥·∥xn−1 − xn−2∥
+θ2n∥xn − xn−1∥2 + δ2n∥xn−1 − xn−2∥2

−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]
]

+γnk∥xn − x∗∥2 + 2γn⟨F (x∗)− x∗, xn+1 − x∗⟩
≤ (1− (1− k)γn)∥xn − x∗∥2

+2θn∥xn − x∗∥·∥xn − xn−1∥
+2 |δn|·∥xn − x∗∥·∥xn−1 − xn−2∥
+2θn |δn|·∥xn − xn−1∥·∥xn−1 − xn−2∥
+θ2n∥xn − xn−1∥2 + δ2n∥xn−1 − xn−2∥2
−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]
+2γn⟨F (x∗)− x∗, xn+1 − x∗⟩.

Since

θn∥xn − xn−1∥ = γn ·
θn
γn

∥xn − xn−1∥ → 0,

and

|δn|·∥xn−1 − xn−2∥ = γn ·
|δn|
γn

∥xn−1 − xn−2∥ → 0

as n → ∞, there exists M3,M4 > 0 such that

θn∥xn − xn−1∥ ≤ M3,

and

|δn|·∥xn−1 − xn−2∥ ≤ M4.
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It implies that

(3.29)

∥xn+1 − x∗∥ ≤ (1− (1− k)γn)∥xn − x∗∥2

+θn∥xn − xn−1∥
[
2∥xn − x∗∥

+2 |δn|·∥xn−1 − xn−2∥+ θn∥xn − xn−1∥
]

+ |δn|·∥xn−1 − xn−2∥
×[2∥xn − x∗∥+ |δn|·∥xn−1 − xn−2∥]
−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]
+2γn⟨F (x∗)− x∗, xn+1 − x∗⟩

= (1− (1− k)γn)∥xn − x∗∥2
+(1− k)γn · θnγn

∥xn − xn−1∥
× 2∥xn−x∗∥+2|δn|·∥xn−1−xn−2∥+θn∥xn−xn−1∥

1−k

+(1− k)γn · |δn|γn
∥xn−1 − xn−2∥

× 2∥xn−x∗∥+|δn|·∥xn−1−xn−2∥
1−k

−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]
+2γn⟨F (x∗)− x∗, xn+1 − x∗⟩

≤ (1− (1− k)γn)∥xn − x∗∥2 + (1− k)γnbn
−(1− 2δ)[∥zn − wn∥2 + ∥yn − zn∥2]

where

bn :=
1

1− k
[5M5

θn
γn

∥xn − xn−1∥+ 3M5
|δn|
γn

∥xn−1 − xn−2∥+ 2⟨f(x∗)− x∗, xn+1 − x∗⟩]

and M5 = max{sup
n

∥xn − x∗∥,M3,M4}.

It follows that

(3.30) (1− 2δ))[∥zn − wn∥2 + ∥yn − zn∥2] ≤ ∥xn − x∗∥2−∥xn+1 − x∗∥2
+(1− k)γnM

where M = sup
n

bn.

From (3.29), we set

an := ∥xn − x∗∥2 and ξn := (1− k)γn.

Hence, we obtain
an+1 ≤ (1− ξn)an + ξnbn.

Suppose {ani
} is a subsequence of {an} satisfying

lim inf
i→∞

(ani+1 − ani
) ≥ 0.

By (3.30) and conditions 2.2), we have

lim sup
i→∞

(1− 2δ))[∥zni
− wni

∥2 + ∥yni
− zni

∥2] ≤ lim sup
i→∞

(ani
− ani+1)

+(1− k)M lim
i→∞

γni

= − lim inf
i→∞

(ani+1 − ani
)

≤ 0,

which implies

(3.31) lim
i→∞

∥zni
− wni

∥ = lim
i→∞

∥yni
− zni

∥ = 0.
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Using conditions 2.2) - 2.3), and (3.31), we have

(3.32)

∥xni+1 − xni∥ ≤ γni∥F (xni)− xni∥+ ∥yni − xni∥
≤ γni∥F (xni)− xni∥+∥yni − wni∥+∥wni − xni∥
≤ γni

∥F (xni
)− xni

∥+ ∥yni
− zni

∥+ ∥zni
− wni

∥
+γni

θni

γni
∥xni−xni−1∥+γni

|δni |
γni

·∥xni−1−xni−2∥
→ 0

as i → ∞. We next show that lim sup
i→∞

⟨F (x∗)− x∗, xni+1 − x∗⟩ ≤ 0.

Let {xnij
} be a subsequence of {xni} such that

lim
j→∞

⟨F (x∗)− x∗, xnij
− x∗⟩ = lim sup

i→∞
⟨F (x∗)− x∗, xni − x∗⟩.

Since {xnij
} is bounded, there exists a subsequence {xnijk

} of {xnij
} such that xnijk

⇀

x̄ ∈ H. Without loss of generality, we may assume that xnij
⇀ x̄. Thus, we also have

znij
⇀ x̄.

From Assumption 1.1 (A1), we have ∥∇f(wnij
) − ∇f(znij

)∥ → 0 as j → ∞. This
together with (3.31) and condition 2.1) yields

(3.33) ∥
wnij

− znij

αnij

+∇f(znij
)−∇f(wnij

)∥ → 0

as j → ∞. By (2.11), we obtain that

(3.34)
wnij

− znij

αnij

+∇f(znij
)−∇f(wnij

) ∈ ∂g(znij
) +∇f(znij

) = ∂h(znij
)

Using (3.33), (3.34) and znij
⇀ x̄, it follows from Lemma 2.2 that 0 ∈ ∂h(x̄). Hence,

x̄ ∈ Γ.
From (3.32) and (2.10), we obtain that

lim sup
i→∞

⟨F (x∗)− x∗, xni+1 − x∗⟩ ≤ lim sup
i→∞

⟨F (x∗)− x∗, xni+1 − xni
⟩

+ lim sup
i→∞

⟨F (x∗)− x∗, xni
− x∗⟩

= lim
j→∞

⟨F (x∗)− x∗, xnij
− x∗⟩

= ⟨F (x∗)− x∗, x̄− x∗⟩
≤ 0.

By Lemma 2.3, we can conclude that xn → x∗. □

Next, we will employ Algorithm 7 for solving a convex bilevel optimization problem
(1.1) and (1.2).
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Algorithm 8 An double inertial forward-backward algorithm with linesearch (DIFBAL)

Initialization: Choose x1, x0, x−1 ∈ H, σ > 0, δ ∈ (0, 1
8 ) and θ ∈ (0, 1). Take

{γn}, {τn} ⊂ (0,∞), {µn} ⊂ (0,∞) and {ρn} ⊂ (−∞, 0).
Iterative steps: For n ≥ 1, calculate xn+1 as follows:
Step 1. Compute the inertial parameters θn and δn by

(3.35) θn =

{
min{µn,

τn
∥xn−xn−1∥}, if xn ̸= xn−1;

µn, otherwise,

and

(3.36) δn =

{
max{ρn, −τn

∥xn−1−xn−2∥}, if xn ̸= xn−1;

ρn, otherwise,

and let

(3.37) wn = xn + θn(xn − xn−1) + δn(xn−1 − xn−2).

Step 2. Compute the forward-backward step:

(3.38) zn = proxαng(wn − αn∇f(wn))

(3.39) yn = proxβng(zn − βn∇f(zn))

where αn = Linesearch1.1(wn, σ, θ, δ) and βn := Linesearch1.1(zn, σ, θ, δ).
Step 3. Compute the viscosity step:

(3.40) xn+1 = γn(xn − s∇ϕ(xn)) + (1− γn)yn.

Set n := n+1 and return to Step 1.

The following result is obtained directly by Theorem 3.2.

Theorem 3.3. Let {xn} be a sequence generated by Algorithm 8 with the same condition as in
Theorem 3.2. Then, xn → x∗ ∈ Ω where x∗ = PΩf(x

∗).

Proof. Set f = I − s∇ϕ in Theorem 3.2. We known that I − s∇ϕ is a contraction. By
Theorem 3.2, we obtain that xn → x∗ ∈ Γ, where x∗ = PΓf(x

∗). From equation (2.10), it
can be obtained that for any x ∈ Ω,

(3.41)
0 ≥ ⟨f(x∗)− x∗, x− x∗)⟩

= ⟨(x∗ − s∇ϕ(x∗))− x∗, x− x∗⟩
= −s⟨∇ϕ(x∗), x− x∗⟩

□

4. APPLICATIONS

For applications, we explore the practical implementation of our proposed algorithm
in the field of machine learning, specifically using the Extreme Learning Machine (ELM),
which is introduced by Huang et al. [17]. ELM is a widely used neural network model
known for its fast learning speed and high generalization performance. Our algorithm
is integrated into the ELM framework to enhance optimization efficiency and improve
classification accuracy.

To demonstrate the effectiveness of our algorithm, we apply it to real-world data clas-
sification problems, including datasets related to diabetes and breast cancer. Additionally,
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we apply our algorithm on a real dataset from Sriphat Medical Center at Chiang Mai Uni-
versity called Hypertension. We compare the performance of our method against existing
algorithms in terms of accuracy, precision, recall, and the F1 score.

Let {(xn, tn) ∈ Rn × Rm : n = 1, 2, . . . , s} be a given training dataset consisting of s
samples, where xn represents the input and tn denotes the corresponding target output.

The Extreme Learning Machine (ELM) is a fast-learning algorithm designed for Single-
Layer Feedforward Networks (SLFNs). The mathematical formulation of ELM for SLFNs
is given by:

on =

h∑
j=1

ηjG(⟨ωj , xn⟩+ bj), n = 1, 2, . . . , s,

where:
• on is the predicted output,
• h represents the number of hidden nodes,
• G(·) is the activation function,
• ωj and ηj are weight vectors connecting the j-th hidden node to the input and

output nodes, respectively,
• bj is the bias term associated with the j-th hidden node.

The hidden layer output matrix, denoted by H, is structured as follows:

H =

 G(⟨ω1, x1⟩+ b1) · · · G(⟨ωh, x1⟩+ bh)
...

. . .
...

G(⟨ω1, xs⟩+ b1) · · · G(⟨ωh, xs⟩+ bh)


s×h

.

The objective of SLFNs is to approximate the given training samples such that the total
error is minimized:

tn =

h∑
j=1

ηjG(⟨ωj , xn⟩+ bj), n = 1, 2, . . . , s.

The above equation can be rewritten in a compact matrix form as:

(4.42) Hu = T,

where:
• u = [ηT1 , · · · , ηTh ]T represents the output weight vector,
• T = [tT1 , · · · , tTs ]T denotes the target output matrix.

To solve u, ELM randomly assigns values to ωj and bj and focuses on determining
u. However, when the number of hidden nodes is smaller than the number of training
samples (i.e., h < s), H becomes a non-square matrix, making the equation potentially
inconsistent. In such cases, the Moore-Penrose inverse provides a least-squares solution:

(4.43) û = H+T,

where H+ is the Moore-Penrose generalized inverse of H.
This solution minimizes the training error in the least-squares sense:

(4.44) ∥Hû− T∥22 = min
u

∥Hu− T∥22.

To improve generalization and prevent overfitting, least absolute shrinkage and selec-
tion operator (LASSO) is employed. The regularized problem is formulated as:

(4.45) min
u

∥Hu− T∥22 + λ∥u∥1,

where:
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• ∥ · ∥1 denotes the l1-norm, defined as ∥(x1, . . . , xn)∥1 =
n∑

i=1

|xi|,

• λ > 0 is the regularization parameter.

This problem can be rewritten in the form of bilevel optimization:

• Define f(u) := ∥Hu−T∥22,
• Define g(u) := λ∥u∥1,
• For the outer level problem, set ϕ(u) := 1

2∥u∥
2
2 with constants Lϕ = 1 and σϕ = 1.

This formulation allows the integration of our proposed algorithm into the ELM frame-
work, offering an efficient approach to training SLFNs with improved convergence and
classification performance.

The following table provides details on the experimental setup, dataset descriptions,
and comparative results.

For optimal efficiency in our experiment, we carefully selected parameters by choosing
the most advantageous configuration for each algorithm, as presented in Table 1.

TABLE 1. The setting of parameters for each algorithms
Parameters Algorithm 8 Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 5 Algorithm 6

σ 1 - - - - - 1
γn 0.003 + 1

50n
- - - - - 1

50n
θ 0.9 - - - - - 0.9
δ 0.1 - - - - - 0.1

µn
n−1

n+α−1
- - - - - n

n+1
ρn −0.00001 - - - - - -

τn
33·1020

n
- 1

(n+1)2
1

(n+1)2
1

(n+1)2
1

(n+1)2
1050

n2

cn - n·10−5

(n+1)·LF

n·10−5

(n+1)·LF

1
LF

1
LF

1
LF

-

s 0.001 0.001 0.001 0.001 0.001 0.001 0.001
α 3 - 3 3 3 3 -
q - - - - 4 4 -

In addition, we set

• λ = 10−5

• G is sigmoid function,
• h = 30,
• ∇f(u) = 2HT (Hu− T ).

In our experiments, we focus on classifying the Diabetes and Breast Cancer datasets
from the UCI Machine Learning Repository into two distinct classes. Our goal is to eval-
uate the performance of different algorithms in solving this classification task.

To assess the effectiveness of our proposed approach, we compare it with several exist-
ing algorithms, including:

• Algorithm 8 (our proposed method),
• Algorithm 1 by Sabach and Shtern [4],
• Algorithm 2 by Shehu et al. [5],
• Algorithm 3, Algorithm 4, and Algorithm 5 by Duan and Zhang [7].

The performance of each algorithm is analyzed at different iteration numbers: 100th,
and 500th iterations. The experimental results, detailing the classification accuracy(acc.),
precision(pre.), recall(rec), and the F1 score, are presented in Table 2 and Table 3 for the
each datasets at 100th and 500th iterations, respectively.
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TABLE 2. The effectiveness of each algorithm for each dataset with 10-
fold CV. at 100 iterations.
Datasets Algorithm acc. train acc.test pre. train pre.test rec. train rec.test F1 train F1 test

D
ia

be
te

s
Algorithm 7 94.4699 94.4873 0.9349 0.9323 0.9717 0.9800 0.9529 0.9543
Algorithm 1 86.6716 85.7717 0.9384 0.9328 0.8225 0.8123 0.8766 0.8644
Algorithm 2 91.9212 91.2949 0.9135 0.9164 0.9495 0.9362 0.9311 0.9249
Algorithm 3 92.0742 91.2949 0.9155 0.9164 0.9500 0.9362 0.9324 0.9249
Algorithm 4 91.9722 91.2949 0.9140 0.9164 0.9500 0.9362 0.9362 0.9249
Algorithm 5 91.9722 91.2949 0.9140 0.9164 0.9500 0.9362 0.9362 0.9249
Algorithm 6 94.3934 93.8055 0.9400 0.9330 0.9641 0.9642 0.9519 0.9475

Br
ea

st
ca

nc
er

Algorithm 7 97.4947 97.5128 0.9549 0.9552 0.9744 0.9748 0.9646 0.9648
Algorithm 1 97.0880 97.0737 0.9298 0.9301 0.9916 0.9915 0.9597 0.9596
Algorithm 2 96.2420 95.8994 0.9532 0.9527 0.9386 0.9290 0.9459 0.9403
Algorithm 3 96.2420 95.8994 0.9532 0.9527 0.9386 0.9290 0.9459 0.9403
Algorithm 4 96.2420 95.8994 0.9532 0.9527 0.9386 0.9290 0.9459 0.9403
Algorithm 5 96.2420 95.8994 0.9532 0.9527 0.9386 0.9290 0.9459 0.9403
Algorithm 6 97.4622 97.3679 0.9549 0.9548 0.9735 0.9707 0.9641 0.9626

H
yp

er
te

ns
io

n

Algorithm 7 89.1363 89.1127 0.8478 0.8496 0.9314 0.9282 0.8876 0.8871
Algorithm 1 87.6044 87.5085 0.8192 0.8188 0.9379 0.9367 0.8745 0.8736
Algorithm 2 88.3882 88.2780 0.8420 0.8418 0.9206 0.9189 0.8796 0.8785
Algorithm 3 88.4025 88.2943 0.8421 0.8420 0.9209 0.9189 0.8797 0.8787
Algorithm 4 88.4025 88.2943 0.8421 0.8420 0.9209 0.9189 0.8797 0.8787
Algorithm 5 88.4025 88.2943 0.8421 0.8420 0.9209 0.9189 0.8797 0.8787
Algorithm 6 88.9053 88.8181 0.8459 0.8448 0.9282 0.9282 0.8851 0.8844

Table 2 demonstrates that at the 100th iteration our method outperforms the others in
terms of accuracy, precision, recall, and F1-score across all datasets.

TABLE 3. The effectiveness of each algorithm for each dataset with 10-
fold CV. at 500 iterations.
Dataset s Algorithm acc. train acc.test pre. train pre.test rec. train rec.test F1 train F1 test

D
ia

be
te

s

Algorithm 7 96.0499 94.9524 0.9439 0.9379 0.9903 0.9800 0.9665 0.9575
Algorithm 1 90.0357 88.5095 0.9273 0.9239 0.8973 0.8763 0.9120 0.8972
Algorithm 2 90.8257 90.3805 0.8945 0.8946 0.9531 0.9482 0.9228 0.9193
Algorithm 3 90.8002 90.3805 0.8945 0.8946 0.9526 0.9482 0.9226 0.9193
Algorithm 4 90.8002 90.3805 0.8945 0.8946 0.9526 0.9482 0.9226 0.9193
Algorithm 5 90.8002 90.3805 0.8945 0.8946 0.9526 0.9482 0.9226 0.9193
Algorithm 6 95.2090 93.5835 0.9379 0.9274 0.9819 0.9682 0.9594 0.9462

Br
ea

st
ca

nc
er

Algorithm 7 97.7225 97.6620 0.9619 0.9632 0.9735 0.9707 0.9676 0.9667
Algorithm 1 97.2181 97.2165 0.9297 0.9304 0.9958 0.9957 0.9616 0.9617
Algorithm 2 97.2507 97.0759 0.9584 0.9583 0.9633 0.9582 0.9608 0.9581
Algorithm 3 97.2507 97.0759 0.9584 0.9583 0.9633 0.9582 0.9608 0.9581
Algorithm 4 97.2507 97.0759 0.9584 0.9583 0.9633 0.9582 0.9608 0.9581
Algorithm 5 97.2507 97.0759 0.9584 0.9583 0.9633 0.9582 0.9608 0.9581
Algorithm 6 97.6411 97.5149 0.9584 0.9590 0.9749 0.9707 0.9666 0.9646

H
yp

er
te

ns
io

n

Algorithm 7 89.5874 89.7017 0.8675 0.8691 0.9134 0.9143 0.8899 0.8911
Algorithm 1 87.4463 87.3446 0.8114 0.8100 0.9476 0.9477 0.8743 0.8734
Algorithm 2 88.0685 88.0485 0.8330 0.8333 0.9267 0.9261 0.8774 0.8771
Algorithm 3 88.0794 88.0812 0.8331 0.8338 0.9268 0.9261 0.8775 0.8774
Algorithm 4 88.1340 88.1958 0.8377 0.8387 0.9207 0.9214 0.8773 0.8780
Algorithm 5 88.1340 88.1958 0.8377 0.8387 0.9207 0.9214 0.8773 0.8780
Algorithm 6 89.2236 89.0634 0.8542 0.8522 0.9236 0.9229 0.8876 0.8860

As shown in Table 3, at the 500th iteration, our algorithm also delivers superior perfor-
mance compared to the others, achieving higher accuracy, precision, recall, and F1-score.

5. CONCLUSIONS

In this work, we propose a new double inertial accelerated algorithm with linesearch
technique and analyze its strong convergence theorem under some suitable conditions.
Consequently, the algorithm can be effectively applied to convex bilevel optimization
problems. Additionally, we employ it as a machine learning model for data classification
of noncommunicable diseases and compare its performance with existing algorithms. The
results indicate that our algorithm outperforms the other algorithms in the literature.
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