Analytical investigation of beam deformation equation using perturbation, homotopy perturbation, variational iteration and optimal homotopy asymptotic methods

F. FarrokhzadP. MowlaeeA. BarariA. J. ChoobbastiH. D. Kaliji



The beam deformation equation has very wide applications in structural engineering. As a differential equation, it has its own problem concerning existence, uniqueness and methods of solutions. Often, original forms of governing differential equations used in engineering problems are simplified, and this process produces noise in the obtained answers. This paper deals with solution of second order of differential equation governing beam deformation using four analytical approximate methods, namely the Homotopy Perturbation Method (HPM), Variational Iteration Method (VIM) and Optimal Homotopy Asymptotic Method (OHAM). The comparisons of the results reveal that these methods are very effective, convenient and quite accurate to systems of non-linear differential equation.

Additional Information


Barari A., Choobbasti A. J., Farrokhzad F., Kaliji H. D., Mowlaee F.