In this work, we introduce and study a new class of weak enriched nonexpasive mappings which is a generalization of enriched nonexpansive mappings provided by Berinde [Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces], Carpathian J. Math., 35 (2019), No. 3, 293–304]. This class of mappings generalizes several important classes of nonlinear mappings. We prove some fixed point theorems regarding this kind of mappings which extend some important results in [Berinde, V., Approximating fixed points of enriched nonexpansive mappings by Krasnoselskij iteration in Hilbert spaces, Carpathian J. Math., 35 (2019), No. 3, 293–304]. Moreover, some examples, to ensure the existence of these mappings and support our main theorems, are also given.
Existence of fixed points of weak enriched nonexpansive mappings in Banach spaces
Suantai, Suthep, Chumpungam, Dawan and Sarnmeta, Panitarn
Full PDF

Issue no: Vol 37/2021 no. 2
Tags: enriched nonexpansive mapping, Fixed point theory, existence theorem
Additional Information
Author(s) | Chumpungam, Dawan , Sarnmeta, Panitarn, Suantai, Suthep |
---|---|
DOI | https://doi.org/10.37193/CJM.2021.02.14 |
Search…
Magazine Issues
- Vol 36/2020 no. 3 (15)
- Vol 37/2021 no. 1 (14)
- Vol 37/2021 no. 2 (20)
- Vol 37/2021 no. 3 (15)
- Vol 38/2022 no. 1 (20)
- Vol 38/2022 no. 2 (20)
- Vol 38/2022 no. 3 (0)
- Vol 38/2022 no. 4 (0)
- Vol 36/2020 no. 2 (16)
- Vol 36/2020 no. 1 (15)
- Vol 35/2019 no. 3 (16)
- Vol 35/2019 no. 2 (12)
- Vol 35/2019 no. 1 (12)
- Vol 34/2018 no. 1 (12)
- Vol 34/2018 no. 2 (15)
- Vol 34/2018 no. 3 (23)
- Vol 33/2017 no. 3 (14)
- Vol 33/2017 no. 2 (12)
- Vol 33/2017 no. 1 (13)
- Vol 32/2016 no. 3 (13)
- Vol 32/2016 no. 2 (15)
- Vol 32/2016 no. 1 (14)
- Vol 31/2015 no. 3 (18)
- Vol 31/2015 no. 2 (15)
- Vol 31/2015 no. 1 (16)
- Vol 30/2014 no. 3 (18)
- Vol 30/2014 no. 2 (15)
- Vol 30/2014 no. 1 (17)
- Vol 29/2013 no. 2 (17)
- Vol 29/2013 no. 1 (16)
- Vol 28/2012 no. 2 (20)
- Vol 28/2012 no. 1 (20)
- Vol 27/2011 no. 2 (14)
- Vol 27/2011 no. 1 (13)
- Vol 26/2010 no. 2 (4)
- Vol 26/2010 no. 1 (14)
- Vol 25/2009 no. 2 (13)
- Vol 25/2009 no. 1 (13)
- Vol 24/2008 no. 3 (21)
- Vol 24/2008 no. 2 (14)
- Vol 24/2008 no. 1 (19)
- Vol 23/2007 no. 1-2 (25)
- Vol 22/2006 no. 1-2 (23)
- Vol 21/2005 no. 1-2 (21)
- Vol 20/2004 no. 2 (19)
- Vol 20/2004 no. 1 (20)
- Vol 19/2003 no. 2 (11)
- Vol 19/2003 no. 1 (11)
- Vol 18/2002 no. 2 (43)
- Vol 18/2002 no. 1 (19)
- Vol 17/2001 (26)
- Vol 16/2000 no. 2 (24)
- Vol 16/2000 no. 1 (22)
- Vol 15/1999 (20)
- Vol 14/1998 no. 2 (16)
- Vol 14/1998 no. 1 (13)
- Vol 13/1997 (24)
- Vol 12/1996 (35)
- Vol 11/1995 (13)
- Vol 10/1994 (14)
- Vol 09/1993 (18)
- Vol 08/1992 (9)
- Vol 07/1991 (26)
- Vol 06/1983 (7)
- Vol 05/1980 (4)
- Vol 04/1972 (4)
- Vol 03/1971 (5)
- Vol 02/1971 (6)
- Vol 01/1969 (10)
- Uncategorized (1)
Authors
Abbas, Mujahid
Acu, Ana Maria
Acu, Dumitru
Balaj, Mircea
Berinde, Mădălina
Berinde, Vasile
Bărbosu, Dan
Chidume, C. E.
Choban, Mitrofan M.
Coroian, Iulian
Cosma, Ovidiu
Cristescu, Gabriela
Diudea, Mircea V.
Fukhar-ud-din, Hafiz
Gaidici, A.
Ganguly, S.
Horvat-Marc, Andrei
Ioanoviciu, Aurel
Khan, Abdul Rahim
Kozma, Lidia Elena
Kumam, Poom
Lungu, Nicolaie
Megan, Mihail
Mortici, Cristinel
Mureșan, Anton S.
Mureșan, Viorica
Pişcoran, Laurian-Ioan
Pop, Adina
Pop, Maria Sânziana
Pop, Nicolae
Pop, Ovidiu T.
Pop, Petrică Claudiu
Pop, Vasile
Popa, Dorian
Popa, Valeriu
Pop Sitar, Corina
Păcurar, Mădălina
Păvăloiu, Ion
Rus, Ioan A.
Rusu, Cristian
Sass, Istvan Huba Attila
Soltes, Vincent
Suantai, Suthep
Tașcu, Ioana
Zelina, Ioana
Recently posted
-
On the maximum modulus principle and the identity theorem in arbitrary dimension
-
Extragradient method with a new adaptive step size for solving non-Lipschitzian pseudo-monotone variational inequalities
-
On the real projections of zeros of analytic almost periodic functions
-
Analysis of a nonlinear financial model
-
Some sequences of Euler type, their convergences and their stability
-
On instability in the theory of dipolar bodies with two-temperatures
-
Common endpoints of generalized Suzuki-Kannan-Ćirić type mappings in hyperbolic spaces
-
A descent three-term derivative-free method for signal reconstruction in compressive sensing
-
Classification of pure metallic metric geometries
-
Monotone iteration method for general nonlinear two point boundary value problems with deviating arguments