This paper deals with the sets of real projections of zeros of analytic almost periodic functions defined in a vertical strip. By using our equivalence relation introduced in the context of the complex functions
which can be represented by a Dirichlet-like series, this work provides practical results in order to determine whether a real number belongs to the closure of such a set. Its main result shows that, in the case that the Fourier exponents of an analytic almost periodic function are linearly independent over the rational numbers, such a set has no isolated points.

Additional Information


 Sepulcre, J. M. , Vidal, T.