The aim of our paper is to focus on some properties of hemi-slant submanifolds in metallic (and Golden) Riemannian manifolds. We give some characterizations of hemi-slant submanifolds in metallic or Golden Riemannian manifolds and we obtain integrability conditions for the distributions involved. Examples of hemi-slant submanifolds in metallic and Golden Riemannian manifolds are given.
Hemi-slant submanifolds in metallic Riemannian manifolds
Hretcanu, Cristina E. and Blaga, Adara M.
Abstract
carpathian_2019_35_1_59_68_abstractFull PDF
carpathian_2019_35_1_59_68Additional Information
Author(s) | Blaga, Adara M., Hretcanu, Cristina E. |
---|---|
DOI | https://doi.org/10.37193/CJM.2019.01.07 |
Search…
Magazine Issues
- Vol 40/2024 no. 1 (14)
- Vol 40/2024 no. 2 (20)
- Vol 40/2024 no. 3 (18)
- Vol 41/2025 no. 1 (1)
- Vol 39/2023 no. 3 (13)
- Vol 39/2023 no. 2 (15)
- Vol 39/2023 no. 1 (24)
- Vol 38/2022 no. 1 (20)
- Vol 38/2022 no. 2 (20)
- Vol 38/2022 no. 3 (26)
- Vol 37/2021 no. 3 (15)
- Vol 37/2021 no. 2 (21)
- Vol 37/2021 no. 1 (14)
- Vol 36/2020 no. 3 (15)
- Vol 36/2020 no. 2 (16)
- Vol 36/2020 no. 1 (15)
- Vol 35/2019 no. 3 (16)
- Vol 35/2019 no. 2 (12)
- Vol 35/2019 no. 1 (12)
- Vol 34/2018 no. 1 (12)
- Vol 34/2018 no. 2 (15)
- Vol 34/2018 no. 3 (23)
- Vol 33/2017 no. 3 (14)
- Vol 33/2017 no. 2 (12)
- Vol 33/2017 no. 1 (13)
- Vol 32/2016 no. 3 (13)
- Vol 32/2016 no. 2 (15)
- Vol 32/2016 no. 1 (14)
- Vol 31/2015 no. 3 (18)
- Vol 31/2015 no. 2 (15)
- Vol 31/2015 no. 1 (16)
- Vol 30/2014 no. 3 (18)
- Vol 30/2014 no. 2 (15)
- Vol 30/2014 no. 1 (17)
- Vol 29/2013 no. 2 (17)
- Vol 29/2013 no. 1 (16)
- Vol 28/2012 no. 2 (20)
- Vol 28/2012 no. 1 (20)
- Vol 27/2011 no. 2 (14)
- Vol 27/2011 no. 1 (13)
- Vol 26/2010 no. 2 (4)
- Vol 26/2010 no. 1 (14)
- Vol 25/2009 no. 2 (13)
- Vol 25/2009 no. 1 (13)
- Vol 24/2008 no. 3 (21)
- Vol 24/2008 no. 2 (14)
- Vol 24/2008 no. 1 (19)
- Vol 23/2007 no. 1-2 (25)
- Vol 22/2006 no. 1-2 (23)
- Vol 21/2005 no. 1-2 (21)
- Vol 20/2004 no. 2 (19)
- Vol 20/2004 no. 1 (20)
- Vol 19/2003 no. 2 (11)
- Vol 19/2003 no. 1 (11)
- Vol 18/2002 no. 2 (43)
- Vol 18/2002 no. 1 (19)
- Vol 17/2001 (26)
- Vol 16/2000 no. 2 (24)
- Vol 16/2000 no. 1 (22)
- Vol 15/1999 (20)
- Vol 14/1998 no. 2 (16)
- Vol 14/1998 no. 1 (13)
- Vol 13/1997 (24)
- Vol 12/1996 (35)
- Vol 11/1995 (13)
- Vol 10/1994 (14)
- Vol 09/1993 (18)
- Vol 08/1992 (9)
- Vol 07/1991 (26)
- Vol 06/1983 (7)
- Vol 05/1980 (4)
- Vol 04/1972 (4)
- Vol 03/1971 (5)
- Vol 02/1971 (6)
- Vol 01/1969 (10)
- Uncategorized (0)
Authors
Abbas, Mujahid
Acu, Dumitru
Balaj, Mircea
Berinde, Mădălina
Berinde, Vasile
Bărbosu, Dan
Chidume, C. E.
Cho, Yeol Je
Choban, Mitrofan M.
Coroian, Iulian
Cosma, Ovidiu
Cristescu, Gabriela
Diudea, Mircea V.
Fukhar-ud-din, Hafiz
Gaidici, A.
Horvat-Marc, Andrei
Ioanoviciu, Aurel
Khan, Abdul Rahim
Kozma, Lidia Elena
Kumam, Poom
Lungu, Nicolaie
Marin, Marin
Megan, Mihail
Mortici, Cristinel
Mureșan, Anton S.
Mureșan, Viorica
Pişcoran, Laurian-Ioan
Pop, Adina
Pop, Maria Sânziana
Pop, Nicolae
Pop, Ovidiu T.
Pop, Petrică Claudiu
Pop, Vasile
Popa, Dorian
Popa, Valeriu
Pop Sitar, Corina
Păcurar, Mădălina
Păvăloiu, Ion
Rus, Ioan A.
Rusu, Cristian
Sass, Istvan Huba Attila
Suantai, Suthep
Tașcu, Ioana
Yao, Jen-Chih
Zelina, Ioana
Recently posted
- Articolul 1
- On the iterative scheme generating methods using mean-valued sequences
- Weak and Strong Convergence of Split Douglas-Rachford Algorithms for Monotone Inclusions
- Fixed point theorems for basic θ-contraction and applications
- A Fast Forward-Backward Algorithm Using Linesearch and Inertial Techniques for Convex Bi-level Optimization Problems with Applications
- Convergence of self-adaptive Tseng-type algorithms for split variational inequalities and fixed point problems
- A fast contraction algorithm using two inertial extrapolations for variational inclusion problem and data classification
- Periodic cycles for an extension of generalized 3x + 1 functions
- Some remarks on expansive mappings in metric spaces
- Asymptotically α hemicontractive mappings in Hilbert spaces and a new algorithm for solving associated split common fixed point problem