Implicit functional differential equations with linear modification of the argument, via weakly Picard operator theory


 Mureşan, Anton S. and Mureşan, Viorica 


Full PDF

carpathian_2021_37_2_227_234

Let
\mathbf{K}:=\mathbf{R}\text{ or }\mathbf{C},\text{ \ }0<\lambda <1
and
f \in C([0,b] \times \textbf{K}^3,\textbf{K}).

In this paper we use the weakly Picard operator theory technique to study the following functional-differential equation

    \begin{equation*} y'(x)=f(x,y(x),y'(x),y(\lambda x)), x \in [0,b]. \end{equation*}

Additional Information

Author(s)

 Mureşan, Anton S., Mureşan, Viorica 

DOI

https://doi.org/10.37193/CJM.2021.02.09